On full-life-cycle SOC estimation for lithium batteries by a variable structure based fractional-order extended state observer

内阻 控制理论(社会学) 电池(电) 观察员(物理) 荷电状态 计算机科学 功率(物理) 量子力学 物理 人工智能 控制(管理)
作者
Xu Zhao,Yongan Chen,Luo-jia Chen,Ning Chen,Hao Wang,Wei Huang,Jiayao Chen
出处
期刊:Applied Energy [Elsevier]
卷期号:351: 121828-121828 被引量:14
标识
DOI:10.1016/j.apenergy.2023.121828
摘要

Accurate SOC estimation of lithium batteries are crucial for the efficient operation of new energy storage systems. During the ageing of the battery, structure and parameters of the battery model, especially internal resistance, may change, which has a particularly significant impact on the accuracy of the model. For this reason, this paper proposes a SOC estimation method based on the extended state observer of the variable structure fractional order model. Firstly, an adaptive method for the structure and parameters of fractional order model through distribution of relaxation times (DRT) is proposed on full-cycle-life of lithium battery. The DRT is extracted from the Electrochemical Impedance Spectroscopy (EIS) of the lithium battery. The order and the initial parameters of the fractional order model of the lithium battery is determined by the characteristics of DRT during the ageing process of the lithium battery. Adaptive adjustment of model is realized by parameter identification combining with time domain data. Then, a fractional-order extended state observer is proposed to estimate SOC by treating internal resistance as an extended state, thus realizing online estimation of internal resistance uncertainty. The Lyapunov stability analysis proves that the estimation error of the observer is uniformly ultimately bounded. Finally, the experimental simulation analysis shows that the accuracy of the second-order model is significantly improved compared with the first-order model, and the accuracy improvement of the third-order model is limited compared with the second-order model. The MAE of the proposed algorithm is as low as 0.73%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HooBea完成签到,获得积分10
刚刚
无花果应助积极的雪莲采纳,获得10
刚刚
嗖嗖发布了新的文献求助15
刚刚
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
Re发布了新的文献求助10
3秒前
徐晚疯发布了新的文献求助10
4秒前
高晨焜发布了新的文献求助10
4秒前
4秒前
hyw发布了新的文献求助10
6秒前
dartrible完成签到,获得积分10
6秒前
FashionBoy应助Re采纳,获得10
7秒前
9秒前
9秒前
10秒前
11秒前
12秒前
12秒前
波波完成签到 ,获得积分10
12秒前
复杂雪一完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
钟馗完成签到,获得积分10
14秒前
柒零发布了新的文献求助10
14秒前
晚霞完成签到 ,获得积分10
14秒前
陈时完成签到,获得积分10
14秒前
15秒前
伊尔完成签到 ,获得积分10
15秒前
yuyuyu发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
JJ完成签到,获得积分10
17秒前
17秒前
17秒前
za发布了新的文献求助10
17秒前
18秒前
SciGPT应助WZC采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704877
求助须知:如何正确求助?哪些是违规求助? 5159254
关于积分的说明 15243140
捐赠科研通 4858719
什么是DOI,文献DOI怎么找? 2607409
邀请新用户注册赠送积分活动 1558448
关于科研通互助平台的介绍 1516145