On full-life-cycle SOC estimation for lithium batteries by a variable structure based fractional-order extended state observer

内阻 控制理论(社会学) 电池(电) 观察员(物理) 荷电状态 计算机科学 功率(物理) 物理 控制(管理) 量子力学 人工智能
作者
Xu Zhao,Yongan Chen,Luo-jia Chen,Ning Chen,Hao Wang,Wei Huang,Jiayao Chen
出处
期刊:Applied Energy [Elsevier]
卷期号:351: 121828-121828 被引量:14
标识
DOI:10.1016/j.apenergy.2023.121828
摘要

Accurate SOC estimation of lithium batteries are crucial for the efficient operation of new energy storage systems. During the ageing of the battery, structure and parameters of the battery model, especially internal resistance, may change, which has a particularly significant impact on the accuracy of the model. For this reason, this paper proposes a SOC estimation method based on the extended state observer of the variable structure fractional order model. Firstly, an adaptive method for the structure and parameters of fractional order model through distribution of relaxation times (DRT) is proposed on full-cycle-life of lithium battery. The DRT is extracted from the Electrochemical Impedance Spectroscopy (EIS) of the lithium battery. The order and the initial parameters of the fractional order model of the lithium battery is determined by the characteristics of DRT during the ageing process of the lithium battery. Adaptive adjustment of model is realized by parameter identification combining with time domain data. Then, a fractional-order extended state observer is proposed to estimate SOC by treating internal resistance as an extended state, thus realizing online estimation of internal resistance uncertainty. The Lyapunov stability analysis proves that the estimation error of the observer is uniformly ultimately bounded. Finally, the experimental simulation analysis shows that the accuracy of the second-order model is significantly improved compared with the first-order model, and the accuracy improvement of the third-order model is limited compared with the second-order model. The MAE of the proposed algorithm is as low as 0.73%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
复杂的薯片完成签到,获得积分10
1秒前
CipherSage应助曹小妍采纳,获得10
1秒前
3秒前
Cisplatin发布了新的文献求助10
4秒前
Yin完成签到,获得积分10
5秒前
7秒前
充电宝应助belly采纳,获得10
7秒前
7秒前
7秒前
朱颜发布了新的文献求助10
8秒前
狗子哥完成签到,获得积分10
8秒前
Hello应助kenna123采纳,获得10
8秒前
9秒前
lll完成签到 ,获得积分10
9秒前
彭于晏应助王涛采纳,获得10
9秒前
11秒前
11秒前
11秒前
li完成签到 ,获得积分10
12秒前
12秒前
优美从菡发布了新的文献求助10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
睿O宝宝O完成签到 ,获得积分10
15秒前
耳喃完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
耳喃发布了新的文献求助10
19秒前
hd发布了新的文献求助10
19秒前
彭于晏应助琦琦采纳,获得10
21秒前
负责丹亦发布了新的文献求助10
22秒前
wyh完成签到,获得积分10
22秒前
kenna123发布了新的文献求助10
22秒前
jing完成签到,获得积分10
23秒前
善学以致用应助涵忆采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474