On full-life-cycle SOC estimation for lithium batteries by a variable structure based fractional-order extended state observer

内阻 控制理论(社会学) 电池(电) 观察员(物理) 荷电状态 计算机科学 功率(物理) 物理 控制(管理) 量子力学 人工智能
作者
Xu Zhao,Yongan Chen,Luo-jia Chen,Ning Chen,Hao Wang,Wei Huang,Jiayao Chen
出处
期刊:Applied Energy [Elsevier]
卷期号:351: 121828-121828 被引量:14
标识
DOI:10.1016/j.apenergy.2023.121828
摘要

Accurate SOC estimation of lithium batteries are crucial for the efficient operation of new energy storage systems. During the ageing of the battery, structure and parameters of the battery model, especially internal resistance, may change, which has a particularly significant impact on the accuracy of the model. For this reason, this paper proposes a SOC estimation method based on the extended state observer of the variable structure fractional order model. Firstly, an adaptive method for the structure and parameters of fractional order model through distribution of relaxation times (DRT) is proposed on full-cycle-life of lithium battery. The DRT is extracted from the Electrochemical Impedance Spectroscopy (EIS) of the lithium battery. The order and the initial parameters of the fractional order model of the lithium battery is determined by the characteristics of DRT during the ageing process of the lithium battery. Adaptive adjustment of model is realized by parameter identification combining with time domain data. Then, a fractional-order extended state observer is proposed to estimate SOC by treating internal resistance as an extended state, thus realizing online estimation of internal resistance uncertainty. The Lyapunov stability analysis proves that the estimation error of the observer is uniformly ultimately bounded. Finally, the experimental simulation analysis shows that the accuracy of the second-order model is significantly improved compared with the first-order model, and the accuracy improvement of the third-order model is limited compared with the second-order model. The MAE of the proposed algorithm is as low as 0.73%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
想喝冰美完成签到,获得积分10
2秒前
zhengyuanyuan完成签到,获得积分10
2秒前
今后应助superspace采纳,获得30
2秒前
小核桃完成签到,获得积分10
3秒前
机灵夏云完成签到,获得积分10
3秒前
Biofly526完成签到,获得积分10
3秒前
3秒前
CipherSage应助supermary采纳,获得10
4秒前
wanci应助煜琪采纳,获得10
4秒前
5秒前
华仔应助zyc采纳,获得10
5秒前
冷艳易文完成签到,获得积分10
6秒前
6秒前
华仔应助咩咩采纳,获得10
6秒前
7秒前
ZZY完成签到,获得积分20
7秒前
Redamancy完成签到,获得积分10
7秒前
月月完成签到,获得积分10
7秒前
大力的幻柏完成签到,获得积分10
8秒前
JamesPei应助王宇辉采纳,获得10
8秒前
伍铭完成签到,获得积分10
8秒前
9秒前
哇啦哇啦发布了新的文献求助10
9秒前
9秒前
zlh发布了新的文献求助10
10秒前
汉堡包应助单薄的沛蓝采纳,获得10
10秒前
xiaohu完成签到,获得积分10
10秒前
Dr发布了新的文献求助10
11秒前
香蕉觅云应助wujiwuhui采纳,获得10
11秒前
调研昵称发布了新的文献求助10
11秒前
12秒前
79发布了新的文献求助10
13秒前
ufoghl发布了新的文献求助10
13秒前
yangyangll发布了新的文献求助10
13秒前
愉快书琴完成签到,获得积分10
13秒前
14秒前
天易完成签到,获得积分10
15秒前
15秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148361
求助须知:如何正确求助?哪些是违规求助? 2799495
关于积分的说明 7835018
捐赠科研通 2456710
什么是DOI,文献DOI怎么找? 1307424
科研通“疑难数据库(出版商)”最低求助积分说明 628154
版权声明 601655