亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On full-life-cycle SOC estimation for lithium batteries by a variable structure based fractional-order extended state observer

内阻 控制理论(社会学) 电池(电) 观察员(物理) 荷电状态 计算机科学 功率(物理) 物理 控制(管理) 量子力学 人工智能
作者
Xu Zhao,Yongan Chen,Luo-jia Chen,Ning Chen,Hao Wang,Wei Huang,Jiayao Chen
出处
期刊:Applied Energy [Elsevier]
卷期号:351: 121828-121828 被引量:14
标识
DOI:10.1016/j.apenergy.2023.121828
摘要

Accurate SOC estimation of lithium batteries are crucial for the efficient operation of new energy storage systems. During the ageing of the battery, structure and parameters of the battery model, especially internal resistance, may change, which has a particularly significant impact on the accuracy of the model. For this reason, this paper proposes a SOC estimation method based on the extended state observer of the variable structure fractional order model. Firstly, an adaptive method for the structure and parameters of fractional order model through distribution of relaxation times (DRT) is proposed on full-cycle-life of lithium battery. The DRT is extracted from the Electrochemical Impedance Spectroscopy (EIS) of the lithium battery. The order and the initial parameters of the fractional order model of the lithium battery is determined by the characteristics of DRT during the ageing process of the lithium battery. Adaptive adjustment of model is realized by parameter identification combining with time domain data. Then, a fractional-order extended state observer is proposed to estimate SOC by treating internal resistance as an extended state, thus realizing online estimation of internal resistance uncertainty. The Lyapunov stability analysis proves that the estimation error of the observer is uniformly ultimately bounded. Finally, the experimental simulation analysis shows that the accuracy of the second-order model is significantly improved compared with the first-order model, and the accuracy improvement of the third-order model is limited compared with the second-order model. The MAE of the proposed algorithm is as low as 0.73%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助qlsweep采纳,获得100
1秒前
陳.发布了新的文献求助10
5秒前
西红柿有饭吃吗完成签到,获得积分10
5秒前
彭浩完成签到,获得积分10
12秒前
18秒前
LLLucen完成签到 ,获得积分10
19秒前
19秒前
20秒前
shhoing应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
23秒前
Yuanyuan发布了新的文献求助10
25秒前
25秒前
husi发布了新的文献求助10
29秒前
充电宝应助清脆靳采纳,获得10
29秒前
Jasper应助gaijiaofanv采纳,获得10
30秒前
iDong完成签到 ,获得积分10
36秒前
45秒前
果小镁发布了新的文献求助10
46秒前
Robot完成签到 ,获得积分20
47秒前
47秒前
48秒前
清脆靳发布了新的文献求助10
49秒前
gaijiaofanv发布了新的文献求助10
52秒前
青柳雅春发布了新的文献求助10
53秒前
GU完成签到,获得积分10
55秒前
kk_1315完成签到,获得积分0
57秒前
59秒前
食指发布了新的文献求助10
59秒前
蘑蘑菇菇完成签到,获得积分10
1分钟前
Jack完成签到 ,获得积分10
1分钟前
1分钟前
CCC发布了新的文献求助10
1分钟前
吴彦祖完成签到,获得积分10
1分钟前
洞两发布了新的文献求助10
1分钟前
dream完成签到 ,获得积分10
1分钟前
Grendyu发布了新的文献求助30
1分钟前
1分钟前
叫我小橙完成签到,获得积分10
1分钟前
星辰大海应助Atopos采纳,获得10
1分钟前
无情的踏歌应助清脆靳采纳,获得50
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561238
求助须知:如何正确求助?哪些是违规求助? 4646374
关于积分的说明 14678419
捐赠科研通 4587681
什么是DOI,文献DOI怎么找? 2517193
邀请新用户注册赠送积分活动 1490462
关于科研通互助平台的介绍 1461344