亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

History Makes the Future: Iterative Learning Control for High-Speed Trains

迭代学习控制 火车 弹道 计算机科学 过程(计算) 迭代和增量开发 任务(项目管理) 控制(管理) 跟踪(教育) 控制理论(社会学) 工程类 人工智能 地图学 操作系统 软件工程 心理学 物理 天文 系统工程 地理 教育学
作者
Shuai Gao,Qijiang Song,Hao Jiang,Dong Shen
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 6-21
标识
DOI:10.1109/mits.2023.3310668
摘要

With the development of high-speed rail transportation, the automatic train operation (ATO) of high-speed trains (HSTs) has attracted considerable attention in the fields of both theoretical research and engineering practice. The core task of ATO is trajectory tracking. As an intelligent control method that imitates human learning behavior, iterative learning control (ILC) has been widely applied to various trajectory tracking problems. Owing to the remarkable repetitiveness of HST operation and distinct characteristics of ILC, ILC is regarded as a promising and potential method to track the desired speed trajectory of HSTs. Therefore, various ILC schemes have been designed for HSTs. This article presents a survey on ILC for HSTs and provides an overview of related research results. First, we provide a brief background on ATO and ILC and explain why the ILC application is considered for the ATO of HSTs. Then, we divide the existing ILC schemes for HSTs into two categories, namely, model based and model free, according to whether they are based on the train dynamic model. Based on these schemes, we introduce model-based and model-free ILC, respectively. Next, considering that HST operation is a complex process that may encounter various issues, we introduce extensions of ILC for HSTs to address these issues. The extensions are summarized from three aspects: accurate dynamic models, safety, and diversified control objectives. Finally, we present promising directions for future research. We believe that the results of this survey can provide a general concept of the current progress in applying ILC to HSTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zs完成签到 ,获得积分10
11秒前
14秒前
15秒前
科研小黑发布了新的文献求助10
19秒前
dolphin完成签到 ,获得积分0
28秒前
彭于晏应助xxxc采纳,获得10
28秒前
40秒前
54秒前
Jasmine发布了新的文献求助10
58秒前
58秒前
58秒前
阿智发布了新的文献求助10
1分钟前
酷波er应助科研通管家采纳,获得30
1分钟前
1分钟前
Jasmine完成签到,获得积分10
1分钟前
1分钟前
19900420发布了新的文献求助10
1分钟前
柠檬完成签到,获得积分10
1分钟前
阿智完成签到,获得积分20
2分钟前
2分钟前
vain完成签到,获得积分10
2分钟前
ding应助阿智采纳,获得10
2分钟前
FashionBoy应助悦耳的镜子采纳,获得10
2分钟前
2分钟前
隐形曼青应助科研王者采纳,获得30
2分钟前
2分钟前
Esperanza完成签到,获得积分10
2分钟前
han发布了新的文献求助30
2分钟前
无花果应助科研通管家采纳,获得10
3分钟前
yx应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
科研通AI2S应助jyy采纳,获得10
3分钟前
charliechen完成签到,获得积分10
3分钟前
悦耳的镜子完成签到,获得积分10
3分钟前
学术小白完成签到,获得积分10
3分钟前
charliechen发布了新的文献求助100
3分钟前
科研王者完成签到,获得积分10
3分钟前
传奇3应助llm采纳,获得10
3分钟前
在水一方应助yf采纳,获得10
3分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234546
求助须知:如何正确求助?哪些是违规求助? 2880894
关于积分的说明 8217297
捐赠科研通 2548495
什么是DOI,文献DOI怎么找? 1377792
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623347