History Makes the Future: Iterative Learning Control for High-Speed Trains

迭代学习控制 火车 弹道 计算机科学 过程(计算) 迭代和增量开发 任务(项目管理) 控制(管理) 跟踪(教育) 控制理论(社会学) 工程类 人工智能 地图学 操作系统 软件工程 心理学 物理 天文 系统工程 地理 教育学
作者
Shuai Gao,Qijiang Song,Hao Jiang,Dong Shen
出处
期刊:IEEE Intelligent Transportation Systems Magazine [Institute of Electrical and Electronics Engineers]
卷期号:16 (1): 6-21
标识
DOI:10.1109/mits.2023.3310668
摘要

With the development of high-speed rail transportation, the automatic train operation (ATO) of high-speed trains (HSTs) has attracted considerable attention in the fields of both theoretical research and engineering practice. The core task of ATO is trajectory tracking. As an intelligent control method that imitates human learning behavior, iterative learning control (ILC) has been widely applied to various trajectory tracking problems. Owing to the remarkable repetitiveness of HST operation and distinct characteristics of ILC, ILC is regarded as a promising and potential method to track the desired speed trajectory of HSTs. Therefore, various ILC schemes have been designed for HSTs. This article presents a survey on ILC for HSTs and provides an overview of related research results. First, we provide a brief background on ATO and ILC and explain why the ILC application is considered for the ATO of HSTs. Then, we divide the existing ILC schemes for HSTs into two categories, namely, model based and model free, according to whether they are based on the train dynamic model. Based on these schemes, we introduce model-based and model-free ILC, respectively. Next, considering that HST operation is a complex process that may encounter various issues, we introduce extensions of ILC for HSTs to address these issues. The extensions are summarized from three aspects: accurate dynamic models, safety, and diversified control objectives. Finally, we present promising directions for future research. We believe that the results of this survey can provide a general concept of the current progress in applying ILC to HSTs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
热情语柔发布了新的文献求助10
1秒前
1秒前
科研通AI5应助尘野采纳,获得10
1秒前
不展发布了新的文献求助10
1秒前
2秒前
可靠幼旋完成签到,获得积分10
2秒前
yangyunheng发布了新的文献求助10
2秒前
11111111发布了新的文献求助20
2秒前
CodeCraft应助Jim采纳,获得10
3秒前
科研通AI5应助起承转合采纳,获得10
3秒前
4秒前
刘浩然完成签到,获得积分10
4秒前
赵姗姗发布了新的文献求助10
5秒前
曾曾发布了新的文献求助10
5秒前
荔枝啵啵发布了新的文献求助10
5秒前
小k发布了新的文献求助10
5秒前
5秒前
5秒前
江辰汐月发布了新的文献求助10
7秒前
7秒前
滋滋完成签到,获得积分20
7秒前
8秒前
8秒前
皮皮完成签到 ,获得积分10
9秒前
waiting完成签到 ,获得积分10
9秒前
yyyyy发布了新的文献求助10
10秒前
大牛子发布了新的文献求助20
10秒前
10秒前
丹D完成签到,获得积分10
10秒前
小音。完成签到,获得积分10
10秒前
淡然的洙完成签到,获得积分10
11秒前
apple完成签到,获得积分10
11秒前
11秒前
香蕉觅云应助izumi采纳,获得10
11秒前
Zoeytam发布了新的文献求助10
12秒前
12秒前
00完成签到,获得积分10
12秒前
枫叶发布了新的文献求助10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546815
求助须知:如何正确求助?哪些是违规求助? 3123829
关于积分的说明 9357111
捐赠科研通 2822447
什么是DOI,文献DOI怎么找? 1551477
邀请新用户注册赠送积分活动 723475
科研通“疑难数据库(出版商)”最低求助积分说明 713766