Spatio-temporal graph attention networks for traffic prediction

计算机科学 图形 网络拓扑 流量(计算机网络) 人工智能 数据挖掘 理论计算机科学 计算机安全 操作系统
作者
Chuang Ma,Yan Li,Guangxia Xu
出处
期刊:Transportation Letters: The International Journal of Transportation Research [Taylor & Francis]
卷期号:16 (9): 978-988 被引量:7
标识
DOI:10.1080/19427867.2023.2261706
摘要

ABSTRACTThe constraints of road network topology and dynamically changing traffic states over time make the task of traffic flow prediction extremely challenging. Most existing methods use CNNs or GCNs to capture spatial correlation. However, convolution operator-based methods are far from optimal in their ability to fuse node features and topology to adequately model spatial correlation. In order to model the spatio-temporal features of traffic flow more effectively, this paper proposes a traffic flow prediction model, the Spatio-Temporal Graph Attention Network (STGAN), which is based on graph attention mechanisms and residually connected gated recurrent units. Specifically, a graph attention mechanism and a random wandering mechanism are used to extract spatial features of the traffic network, and gated recurrent units with residual connections are used to extract temporal features. Experimental results on real-world public transportation datasets show that our approach not only yields state-of-the-art performance, but also exhibits competitive computational efficiency and improves the accuracy of traffic flow prediction.KEYWORDS: Traffic flow predictiongraph attention mechanismresidual connectionneural networks AcknowledgmentsThis work is supported by the National Natural Science Foundation of China (Grant No. 62272120, 62106030); the Technology Innovation and Application Development Projects of Chongqing (Grant No. cstc2021jscx-gksbX0032, cstc2021jscx-gksbX0029); the Research Program of Basic Research and Frontier Technology of Chongqing (Grant No. cstc2021jcyj-msxmX0530); the Key R\& D plan of Hainan Province (Grant No. ZDYF2021GXJS006).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China [62272120, 62106030]; Research Program of Basic Research and Frontier Technology of Chongqing [cstc2021jcyj-msxmX0530]; Key R & D plan of Hainan Province [ZDYF2021GXJS006]; Technology Innovation and Application Development Projects of Chongqing [cstc2021jscx-gksbX0032, cstc2021jscx-gksbX0029].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助沁一采纳,获得10
1秒前
我和狂三贴贴完成签到,获得积分10
1秒前
李健的小迷弟应助王嘉尔采纳,获得10
1秒前
1秒前
1秒前
研友_nVqwxL完成签到,获得积分10
2秒前
专注的春燕完成签到,获得积分20
2秒前
隐形曼青应助今夕何夕采纳,获得10
2秒前
modesty发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
SciGPT应助Delia采纳,获得10
2秒前
慈祥的冬瓜完成签到,获得积分10
3秒前
不知道发布了新的文献求助10
3秒前
3秒前
yuzi完成签到,获得积分10
3秒前
慕青应助丫丫采纳,获得10
3秒前
虚影完成签到,获得积分10
4秒前
4秒前
5秒前
tylerconan完成签到 ,获得积分10
5秒前
03发布了新的文献求助10
5秒前
nini完成签到 ,获得积分10
6秒前
paperSCI发布了新的文献求助10
6秒前
李健应助淡淡的秋寒采纳,获得10
7秒前
争气完成签到,获得积分10
7秒前
Neltharion完成签到,获得积分10
7秒前
7秒前
蒋不惜发布了新的文献求助10
7秒前
yuzi发布了新的文献求助10
8秒前
8秒前
我没昵称发布了新的文献求助10
8秒前
ahey发布了新的文献求助100
8秒前
kevin完成签到,获得积分10
8秒前
生椰拿铁完成签到,获得积分10
8秒前
酷波er应助自然的书易采纳,获得10
9秒前
9秒前
9秒前
优雅幻天完成签到,获得积分10
9秒前
lutos发布了新的文献求助10
10秒前
漫画发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016711
求助须知:如何正确求助?哪些是违规求助? 3556869
关于积分的说明 11322988
捐赠科研通 3289588
什么是DOI,文献DOI怎么找? 1812514
邀请新用户注册赠送积分活动 888100
科研通“疑难数据库(出版商)”最低求助积分说明 812121