清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatio-temporal graph attention networks for traffic prediction

计算机科学 图形 网络拓扑 流量(计算机网络) 人工智能 数据挖掘 理论计算机科学 计算机安全 操作系统
作者
Chuang Ma,Yan Li,Guangxia Xu
出处
期刊:Transportation Letters: The International Journal of Transportation Research [Informa]
卷期号:16 (9): 978-988 被引量:7
标识
DOI:10.1080/19427867.2023.2261706
摘要

ABSTRACTThe constraints of road network topology and dynamically changing traffic states over time make the task of traffic flow prediction extremely challenging. Most existing methods use CNNs or GCNs to capture spatial correlation. However, convolution operator-based methods are far from optimal in their ability to fuse node features and topology to adequately model spatial correlation. In order to model the spatio-temporal features of traffic flow more effectively, this paper proposes a traffic flow prediction model, the Spatio-Temporal Graph Attention Network (STGAN), which is based on graph attention mechanisms and residually connected gated recurrent units. Specifically, a graph attention mechanism and a random wandering mechanism are used to extract spatial features of the traffic network, and gated recurrent units with residual connections are used to extract temporal features. Experimental results on real-world public transportation datasets show that our approach not only yields state-of-the-art performance, but also exhibits competitive computational efficiency and improves the accuracy of traffic flow prediction.KEYWORDS: Traffic flow predictiongraph attention mechanismresidual connectionneural networks AcknowledgmentsThis work is supported by the National Natural Science Foundation of China (Grant No. 62272120, 62106030); the Technology Innovation and Application Development Projects of Chongqing (Grant No. cstc2021jscx-gksbX0032, cstc2021jscx-gksbX0029); the Research Program of Basic Research and Frontier Technology of Chongqing (Grant No. cstc2021jcyj-msxmX0530); the Key R\& D plan of Hainan Province (Grant No. ZDYF2021GXJS006).Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThe work was supported by the National Natural Science Foundation of China [62272120, 62106030]; Research Program of Basic Research and Frontier Technology of Chongqing [cstc2021jcyj-msxmX0530]; Key R & D plan of Hainan Province [ZDYF2021GXJS006]; Technology Innovation and Application Development Projects of Chongqing [cstc2021jscx-gksbX0032, cstc2021jscx-gksbX0029].

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助Marshall采纳,获得10
31秒前
40秒前
Marshall发布了新的文献求助10
46秒前
锦鲤完成签到,获得积分10
53秒前
科研通AI6.1应助twk采纳,获得10
1分钟前
1分钟前
大医仁心完成签到 ,获得积分10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
卓天宇完成签到,获得积分0
2分钟前
量子星尘发布了新的文献求助50
2分钟前
2分钟前
小李老博完成签到,获得积分10
2分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
3分钟前
两个榴莲完成签到,获得积分0
4分钟前
4分钟前
魏猛完成签到,获得积分10
5分钟前
ilihe应助dd采纳,获得10
5分钟前
简单发布了新的文献求助20
5分钟前
dd完成签到,获得积分10
6分钟前
简单发布了新的文献求助20
6分钟前
开心每一天完成签到 ,获得积分10
6分钟前
无极微光应助简单采纳,获得20
7分钟前
7分钟前
Mio发布了新的文献求助10
7分钟前
顾矜应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
乐乐应助科研通管家采纳,获得10
7分钟前
三日发布了新的文献求助10
7分钟前
范白容完成签到 ,获得积分0
8分钟前
栀鸢完成签到,获得积分20
8分钟前
tt完成签到,获得积分10
8分钟前
Dryang完成签到 ,获得积分10
8分钟前
8分钟前
煜琪完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788848
求助须知:如何正确求助?哪些是违规求助? 5712796
关于积分的说明 15473966
捐赠科研通 4916884
什么是DOI,文献DOI怎么找? 2646597
邀请新用户注册赠送积分活动 1594281
关于科研通互助平台的介绍 1548701