Dynamic Characterization of an Adaptive Film-Riding Seal

涡轮机械 迷宫式密封 动压 振动 流离失所(心理学) 刚度 印章(徽章) 机械 泄漏(经济) 雷诺方程 机械工程 压力降 压力测量 结构工程 工程类 雷诺数 声学 物理 湍流 心理学 艺术 经济 视觉艺术 心理治疗师 宏观经济学
作者
Joshua Bird,Patrick Keogh,Carl M. Sangan,Aaron A. Bowsher,Peter Crudgington,James A. Scobie
出处
期刊:Journal of engineering for gas turbines and power [ASM International]
卷期号:146 (1) 被引量:1
标识
DOI:10.1115/1.4063549
摘要

Abstract Shaft seals control the leakage of fluid between areas of high pressure and low pressure around rotating components inside turbomachinery. Static seals are often subject to damaging rubs with the shaft, caused by assembly misalignments and rotordynamic vibrations during operation. Adaptive seals aim to reduce leakage flows whilst minimizing wear. The film riding pressure actuated leaf seal (FRPALS) is one such design which utilizes a large installation clearance and is blown down toward the shaft under pressure. This paper presents a numerical model which can be used in the design and development of adaptive shaft seals, validated by experimental data from the literature. The model uses a modified version of the Reynolds equation to predict the dynamic, frequency-dependent stiffness and damping coefficients of the fluid film. The dynamic coefficients have been solved for different operational clearances and pressure differences to generate coefficient maps. These maps have been incorporated into a blow down model with compliant mechanical leaves to predict the transient translational and angular displacement paths of the FRPALS when subject to an increasing pressure drop. The blow down model has been compared against experimental measurements collected from a specially designed test facility for the characterization of shaft seal performance. Eddy current probes were used to measure the displacement paths of the FRPALS with the experimental values showing that the model can accurately predict the dynamic movement of the seal when subject to a pressure difference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
renlangfen发布了新的文献求助10
刚刚
SciGPT应助负责钢铁侠采纳,获得20
刚刚
Niuniu关注了科研通微信公众号
1秒前
YangSY发布了新的文献求助10
2秒前
明亮灭绝完成签到,获得积分10
2秒前
斯文败类应助sinsinsin采纳,获得10
2秒前
3秒前
烟花应助阳佟水蓉采纳,获得10
3秒前
Hello应助zsl采纳,获得10
3秒前
欣慰半梦完成签到,获得积分20
3秒前
研友_VZG7GZ应助三七二十一采纳,获得10
4秒前
许烟完成签到,获得积分10
4秒前
春眠不觉小小酥完成签到,获得积分10
5秒前
6秒前
Chany发布了新的文献求助10
6秒前
研友_VZG7GZ应助飞天817采纳,获得10
6秒前
6秒前
cencen发布了新的文献求助10
6秒前
6秒前
天天天王完成签到,获得积分10
7秒前
Chiraf完成签到,获得积分10
7秒前
迷路雨寒应助烤冷面采纳,获得40
8秒前
大模型应助烤冷面采纳,获得10
8秒前
迷路雨寒应助烤冷面采纳,获得50
8秒前
小二郎应助烤冷面采纳,获得10
8秒前
Bioxcai完成签到,获得积分10
8秒前
10秒前
utopia发布了新的文献求助10
11秒前
epitaxy完成签到,获得积分10
11秒前
wmwm发布了新的文献求助10
11秒前
Chiraf发布了新的文献求助10
12秒前
Ciel完成签到 ,获得积分10
12秒前
浮游应助yutian采纳,获得10
12秒前
科研通AI5应助复杂的可冥采纳,获得30
12秒前
所所应助dddd采纳,获得10
13秒前
路非明发布了新的文献求助10
13秒前
顾矜应助子云采纳,获得10
13秒前
嗯呢完成签到 ,获得积分10
13秒前
AAA完成签到,获得积分10
14秒前
高分求助中
Incubation and Hatchery Performance, The Devil is in the Details 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5204680
求助须知:如何正确求助?哪些是违规求助? 4383701
关于积分的说明 13650154
捐赠科研通 4241580
什么是DOI,文献DOI怎么找? 2326956
邀请新用户注册赠送积分活动 1324605
关于科研通互助平台的介绍 1276907