Stress Detection Using Physiological Signals Based On Machine Learning

支持向量机 压力(语言学) 计算机科学 焦虑 信号(编程语言) 认知 人工智能 模式识别(心理学) 机器学习 语音识别 心理学 神经科学 哲学 语言学 精神科 程序设计语言
作者
Ashmita Hota,Sung-Won Park
标识
DOI:10.1109/csci58124.2022.00074
摘要

Stress can be defined as the body's attempt to control itself in response to changes in the environment. Due to stress work performance may suffer and the risk of neurological issues such as hypertension and psychological illnesses such as anxiety disorder may rise. In today's world, an increasing number of people are experiencing some form of stress. Comprehension of stress cognition is required along with the capacity to build systems with stress cognition characteristics. A methodology of stress detection using physiological signals based on machine learning is presented in this paper. Physiological signals such as respiration, sweat gland activity on the skin of hands, heart rate, and electromyogram were recorded while driving from multiple healthy participants in various situations and locations. The signal is then segmented for various time intervals such as 100, 200, and 300 seconds, depending on the levels of stress. Statistical features were retrieved and made available to the classifiers namely Support Vector Machine (SVM) and k-Nearest Neighbor (KNN) algorithm. We achieved the highest accuracy of 96% with 100 and 200-second long signal, and 98% with 300-second long signal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChandlerZB完成签到,获得积分10
1秒前
joy完成签到 ,获得积分10
1秒前
2秒前
2秒前
研友_5Y9775完成签到,获得积分20
3秒前
3秒前
手机应助Old-Iron采纳,获得10
3秒前
铲子发布了新的文献求助10
4秒前
momo完成签到,获得积分10
4秒前
丘比特应助啊啊啊啊啊叶采纳,获得30
5秒前
sunny完成签到,获得积分10
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
陈嘟嘟发布了新的文献求助10
7秒前
bu应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
双黄应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
爆米花应助傅宛白采纳,获得10
8秒前
Ava应助chen1采纳,获得10
8秒前
joy关注了科研通微信公众号
9秒前
11秒前
高大怀梦完成签到,获得积分10
11秒前
darsting11发布了新的文献求助20
11秒前
酷波er应助Jonathan采纳,获得10
12秒前
12秒前
濑濑发布了新的文献求助10
14秒前
Hou发布了新的文献求助10
14秒前
高兴的店员完成签到,获得积分10
15秒前
蓝不住完成签到 ,获得积分10
16秒前
zhaozaozao123完成签到,获得积分10
18秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264819
求助须知:如何正确求助?哪些是违规求助? 2904784
关于积分的说明 8331584
捐赠科研通 2575093
什么是DOI,文献DOI怎么找? 1399658
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633296