环境科学
牙冠(牙科)
气象学
火情
风速
地理
生态学
生态系统
医学
牙科
生物
作者
Daniel D. B. Perrakis,Miguel G. Cruz,Martin E. Alexander,Chelene C. Hanes,Dan K. Thompson,Stephen Taylor,B. J. Stocks
出处
期刊:International Journal of Wildland Fire
[CSIRO Publishing]
日期:2023-08-25
卷期号:32 (10): 1455-1473
被引量:7
摘要
Background Crown fires are an ecologically necessary but hazardous process in conifer forests. Prediction of their behaviour in Canada has largely depended on the Canadian Forest Fire Behaviour Prediction System, in which fire weather indices drive primarily fixed fuel type models. The Crown Fire Initiation and Spread (CFIS) system presents a more flexible approach to predicting crown fire occurrence than fixed fuel type models. Aims Using a multi-decadal database of experimental fires carried out in conifer plots (1960–2019, n = 113), our aim was to develop updated models based on the CFIS system approach, fitting crown fire occurrence models to fire environment variables using logistic regression. Methods We tested alternative fuel moisture estimates and compared various model forms using repeated cross-validation. In two-storeyed stands, crown fire occurrence was defined as the involvement of lower canopy stratum fuels. Key results Final models based on wind speed, fuel strata gap, litter moisture and surface fuel consumption predicted crowning events correctly in up to 92% of cases in training data (89% in cross-validation). Conclusions and implications These new models offer improved accuracy and flexibility that will help users assess how competing environmental factors interact under different fuel treatments and wildfire scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI