Improved logistic models of crown fire probability in Canadian conifer forests

环境科学 牙冠(牙科) 气象学 火情 风速 地理 生态学 生态系统 医学 牙科 生物
作者
Daniel D. B. Perrakis,Miguel G. Cruz,Martin E. Alexander,Chelene C. Hanes,Dan K. Thompson,Stephen Taylor,B. J. Stocks
出处
期刊:International Journal of Wildland Fire [CSIRO Publishing]
卷期号:32 (10): 1455-1473 被引量:7
标识
DOI:10.1071/wf23074
摘要

Background Crown fires are an ecologically necessary but hazardous process in conifer forests. Prediction of their behaviour in Canada has largely depended on the Canadian Forest Fire Behaviour Prediction System, in which fire weather indices drive primarily fixed fuel type models. The Crown Fire Initiation and Spread (CFIS) system presents a more flexible approach to predicting crown fire occurrence than fixed fuel type models. Aims Using a multi-decadal database of experimental fires carried out in conifer plots (1960–2019, n = 113), our aim was to develop updated models based on the CFIS system approach, fitting crown fire occurrence models to fire environment variables using logistic regression. Methods We tested alternative fuel moisture estimates and compared various model forms using repeated cross-validation. In two-storeyed stands, crown fire occurrence was defined as the involvement of lower canopy stratum fuels. Key results Final models based on wind speed, fuel strata gap, litter moisture and surface fuel consumption predicted crowning events correctly in up to 92% of cases in training data (89% in cross-validation). Conclusions and implications These new models offer improved accuracy and flexibility that will help users assess how competing environmental factors interact under different fuel treatments and wildfire scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助青石采纳,获得10
刚刚
Jarvis完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
copyaa发布了新的文献求助30
1秒前
1秒前
zsy完成签到 ,获得积分10
2秒前
李健应助mumu采纳,获得30
2秒前
HollidayLee完成签到,获得积分10
2秒前
db完成签到,获得积分10
2秒前
2秒前
温水完成签到 ,获得积分10
3秒前
笑点低蜜蜂完成签到,获得积分10
3秒前
Owen应助普鲁卡因采纳,获得10
3秒前
4秒前
4秒前
4秒前
在水一方应助端庄的雨寒采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
完美世界应助自觉士萧采纳,获得10
5秒前
k1re4x发布了新的文献求助10
5秒前
南浔发布了新的文献求助10
5秒前
5秒前
体贴岩发布了新的文献求助10
6秒前
sak完成签到,获得积分10
6秒前
鹤轸完成签到,获得积分10
6秒前
莫羽倾尘完成签到,获得积分10
6秒前
希望天下0贩的0应助晴天采纳,获得20
6秒前
6秒前
夏至未至完成签到,获得积分10
7秒前
Mic应助冯梦梦采纳,获得10
7秒前
7秒前
充电宝应助michael采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017