The splenic evanescent trauma identification and the injured time estimation in decomposing cadavers based on ATR-FTIR and chemometrics

尸体 腹部外伤 医学 外科 迟钝的
作者
W. Hao,Kai Yu,Gongji Wang,Chen Shen,Xinggong Liang,Run Chen,Xin Wei,Zeyi Hao,Qinru Sun,Kai Zhang,Z Wang
出处
期刊:Microchemical Journal [Elsevier]
卷期号:194: 109261-109261 被引量:1
标识
DOI:10.1016/j.microc.2023.109261
摘要

Trauma is one of the most prevalent disorders in the biomedical field. Abdominal trauma is widely encountered in accidents and some criminal situations, and it has a significant influence on the investigation or conviction of violent crimes. With about 33% of cases involving blunt abdominal trauma, the spleen is the organ that suffers the most and is associated with a significant risk of morbidity and mortality, particularly in patients who have accumulated multiple or compound injuries. “Evanescent trauma” describes an injury that becomes invisible as time passes, decomposition occurs, and other factors involved. In this study, we have found methods to identify splenic evanescent trauma and estimate the injured time in postmortem cadavers by FTIR combination with chemometrics. The PLSDA model to identify splenic evanescent trauma in decomposing cadavers' specificity of externally validation was 0.917, sensitivity was 0.958, and accuracy was 0.950. The PLSDA model to identify DSR and SR in decomposing cadavers' specificity was 0.833, sensitivity was 0.889, and accuracy was 0.875. To eliminate the impact cause by the cadaver's autolysis and putrefaction, and the redundancy of full-spectral data modeling, we performed variables selection with the methods of CARS, GA, SPA. The performance of CARS-PLS was superior to GA-PLS. The SPA-CARS-PLS regression model for the injured time estimation in decomposing cadavers at PMI 2d and 10d had the better performance and better interpretability of spectral. The SPA-CARS-PLS regression model to estimate the injured time at PMI 2d was constructed with 6 latent variables, the R2 CV was 0.911 and the RMSECV was 1.477 d. For external validation, the R2Pred value was 0.884. The root mean square error of prediction(RMSEP) was 2.404 d. The SPA-CARS-PLS regression model to estimate the injured time at PMI 10d was built with 6 latent variables, the R2CV was 0.858 and the RMSECV was 1.868 d. For external validation, the prediction model's R2Pred value was 0.930, the RMSEP was 1.487 d. FTIR combine with chemometrics is useful in identifying the splenic evanescent trauma and estimating the injured time in postmortem decomposed cadavers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wmmm发布了新的文献求助10
刚刚
余笙发布了新的文献求助10
1秒前
充电宝应助冷傲迎梦采纳,获得10
1秒前
彭于晏应助qi采纳,获得30
1秒前
科研通AI2S应助shor0414采纳,获得10
1秒前
ponyy发布了新的文献求助30
2秒前
秋之月发布了新的文献求助10
3秒前
skier发布了新的文献求助10
4秒前
balabala完成签到,获得积分20
4秒前
隐形曼青应助kb采纳,获得10
5秒前
yanyan发布了新的文献求助10
7秒前
繁笙完成签到 ,获得积分10
7秒前
7秒前
无言完成签到 ,获得积分10
7秒前
NONO完成签到 ,获得积分10
8秒前
星辰大海应助TT采纳,获得10
8秒前
10秒前
康康完成签到,获得积分10
10秒前
Xv完成签到,获得积分0
10秒前
13秒前
13秒前
香蕉觅云应助zfzf0422采纳,获得10
13秒前
14秒前
14秒前
李健应助爱听歌的向日葵采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
烟花应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得80
15秒前
所所应助科研通管家采纳,获得20
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
Owen应助科研通管家采纳,获得30
16秒前
婷婷发布了新的文献求助10
16秒前
zzt完成签到,获得积分10
18秒前
张小汉发布了新的文献求助30
19秒前
二十四发布了新的文献求助10
19秒前
赘婿应助junzilan采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824