Rough set approach to predict biochar stability and pH from pyrolysis conditions and feedstock characteristics

生物炭 原材料 热解 固碳 吸附 制浆造纸工业 加热 碳纤维 环境科学 废物管理 工艺工程 化学 二氧化碳 材料科学 有机化学 工程类 复合材料 复合数
作者
Boaz Yi Heng Chung,Jia Chun Ang,Jia Yong Tang,Jia Wen Chong,Raymond R. Tan,Kathleen B. Aviso,Nishanth G. Chemmangattuvalappil,Suchithra Thangalazhy‐Gopakumar
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:198: 221-233 被引量:3
标识
DOI:10.1016/j.cherd.2023.09.003
摘要

Biochar has gained increasing attention as a potential adsorbent for the sequestration of carbon dioxide (CO2) and enhancement of soil fertility. Biochar pH and stability are important adsorbent properties as they indicate the affinity of biochar for CO2 and its potential to be applied in soil for long periods. These attributes are influenced by the feedstock composition and pyrolysis conditions. Therefore, it is important to develop a model that can elucidate the underlying trends and inherent relationships between feedstock composition and pyrolysis operating parameters on biochar pH and stability. In this work, rough set machine learning (RSML) tools have been used to develop a model to quantify this relationship because of the interpretable nature of RSML. RSML is a rule-based prediction model that categorizes the biochar properties by utilizing 'if. then' rules to conditional attributes. In this study, the feedstock properties such as elemental (carbon, hydrogen, oxygen and nitrogen) composition, fixed carbon, ash content, volatile matter, and operating conditions such as residence time, heating rate, and temperature were the conditional attributes while pH, ash content and O/C ratio of biochar were considered the decision attributes. The rules generated from RSML were validated and evaluated for scientific coherency. Thus, this approach provided a model which could reflect on the physical phenomena at varying process conditions. As a result, it was recommended that the pyrolysis temperature is in between 375 and 475 °C, the ash content in the feedstock is between 2.59 and 3.55 wt% and volatile matter in the feedstock is in between 68.9 and 73.8 wt% to obtain biochar with minimum ash content (0–5 wt%), minimum O/C ratio (0–0.2), and high pH (9−11).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周完成签到 ,获得积分10
刚刚
淡然完成签到,获得积分10
1秒前
明理小土豆完成签到,获得积分10
1秒前
刘国建郭菱香完成签到,获得积分10
1秒前
嘤嘤嘤完成签到,获得积分10
1秒前
九川应助粱自中采纳,获得10
1秒前
无辜之卉完成签到,获得积分10
2秒前
无花果应助Island采纳,获得10
2秒前
2秒前
SHDeathlock发布了新的文献求助200
3秒前
Owen应助醒醒采纳,获得10
3秒前
无心的代桃完成签到,获得积分10
4秒前
追寻代真完成签到,获得积分10
4秒前
晓兴兴完成签到,获得积分10
4秒前
leon发布了新的文献求助10
5秒前
洽洽瓜子shine完成签到,获得积分10
5秒前
简单的大白菜真实的钥匙完成签到,获得积分10
6秒前
7秒前
一独白完成签到,获得积分10
8秒前
在水一方应助坚强的樱采纳,获得10
8秒前
慕青应助尼亚吉拉采纳,获得10
9秒前
快乐小白菜应助甜酱采纳,获得10
9秒前
9秒前
qq应助毛慢慢采纳,获得10
10秒前
10秒前
科研通AI5应助吴岳采纳,获得10
10秒前
天天快乐应助ufuon采纳,获得10
11秒前
科研通AI5应助一独白采纳,获得10
12秒前
hearts_j完成签到,获得积分10
12秒前
FashionBoy应助yasan采纳,获得10
12秒前
安琪琪完成签到,获得积分10
13秒前
13秒前
端庄千琴完成签到,获得积分10
13秒前
gaogao完成签到,获得积分10
13秒前
菲菲公主完成签到,获得积分10
14秒前
14秒前
14秒前
英姑应助柒八染采纳,获得10
15秒前
退堂鼓发布了新的文献求助10
15秒前
党弛完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762