KD_ConvNeXt: knowledge distillation-based image classification of lung tumor surgical specimen sections

肺癌 人工智能 计算机科学 特征提取 模式识别(心理学) 医学 病理 内科学
作者
Zhaoliang Zheng,Herui Yao,Chengchuang Lin,Kaixin Huang,Luoxuan Chen,Zihang Shao,Haiyu Zhou,Gansen Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fgene.2023.1254435
摘要

Introduction: Lung cancer is currently among the most prevalent and lethal cancers in the world in terms of incidence and fatality rates. In clinical practice, identifying the specific subtypes of lung cancer is essential in diagnosing and treating lung lesions. Methods: This paper aims to collect histopathological section images of lung tumor surgical specimens to construct a clinical dataset for researching and addressing the classification problem of specific subtypes of lung tumors. Our method proposes a teacher-student network architecture based on a knowledge distillation mechanism for the specific subtype classification of lung tumor histopathological section images to assist clinical applications, namely KD_ConvNeXt. The proposed approach enables the student network (ConvNeXt) to extract knowledge from the intermediate feature layers of the teacher network (Swin Transformer), improving the feature extraction and fitting capabilities of ConvNeXt. Meanwhile, Swin Transformer provides soft labels containing information about the distribution of images in various categories, making the model focused more on the information carried by types with smaller sample sizes while training. Results: This work has designed many experiments on a clinical lung tumor image dataset, and the KD_ConvNeXt achieved a superior classification accuracy of 85.64% and an F1-score of 0.7717 compared with other advanced image classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
attilio发布了新的文献求助10
1秒前
2秒前
McC完成签到,获得积分10
3秒前
Ella完成签到,获得积分10
3秒前
马户的崛起完成签到,获得积分10
4秒前
4秒前
4秒前
飞快的金鑫完成签到,获得积分10
5秒前
木头杨发布了新的文献求助10
5秒前
科目三应助清爽博超采纳,获得10
5秒前
WZH完成签到,获得积分10
6秒前
7秒前
9秒前
10秒前
10秒前
英俊的铭应助mk采纳,获得10
11秒前
14秒前
凡仔完成签到,获得积分20
14秒前
14秒前
14秒前
Burnell发布了新的文献求助10
16秒前
16秒前
minr完成签到,获得积分20
18秒前
清爽博超发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
科研通AI2S应助Burnell采纳,获得10
20秒前
Sew东坡完成签到,获得积分10
20秒前
20秒前
xixixi发布了新的文献求助30
20秒前
852应助lalaland采纳,获得10
20秒前
852应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
Gilana应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012