KD_ConvNeXt: knowledge distillation-based image classification of lung tumor surgical specimen sections

肺癌 人工智能 计算机科学 特征提取 模式识别(心理学) 医学 病理 内科学
作者
Zhaoliang Zheng,Herui Yao,Chengchuang Lin,Kaixin Huang,Luoxuan Chen,Zihang Shao,Haiyu Zhou,Gansen Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fgene.2023.1254435
摘要

Introduction: Lung cancer is currently among the most prevalent and lethal cancers in the world in terms of incidence and fatality rates. In clinical practice, identifying the specific subtypes of lung cancer is essential in diagnosing and treating lung lesions. Methods: This paper aims to collect histopathological section images of lung tumor surgical specimens to construct a clinical dataset for researching and addressing the classification problem of specific subtypes of lung tumors. Our method proposes a teacher-student network architecture based on a knowledge distillation mechanism for the specific subtype classification of lung tumor histopathological section images to assist clinical applications, namely KD_ConvNeXt. The proposed approach enables the student network (ConvNeXt) to extract knowledge from the intermediate feature layers of the teacher network (Swin Transformer), improving the feature extraction and fitting capabilities of ConvNeXt. Meanwhile, Swin Transformer provides soft labels containing information about the distribution of images in various categories, making the model focused more on the information carried by types with smaller sample sizes while training. Results: This work has designed many experiments on a clinical lung tumor image dataset, and the KD_ConvNeXt achieved a superior classification accuracy of 85.64% and an F1-score of 0.7717 compared with other advanced image classification methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助000采纳,获得10
刚刚
刚刚
小二郎应助WFLLL采纳,获得10
1秒前
juphen2发布了新的文献求助10
1秒前
aaaaaa发布了新的文献求助10
1秒前
刻苦静白发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
小蘑菇应助七七丫采纳,获得10
5秒前
cc完成签到,获得积分10
5秒前
5秒前
lin完成签到,获得积分10
7秒前
7秒前
孤独树叶完成签到,获得积分10
7秒前
传奇3应助aaaaaa采纳,获得10
7秒前
小琦琦发布了新的文献求助10
8秒前
qq发布了新的文献求助10
9秒前
Lucas应助甲乙丙丁采纳,获得10
9秒前
zjq完成签到,获得积分10
10秒前
加贝完成签到,获得积分10
10秒前
11秒前
安详凡发布了新的文献求助10
12秒前
孤独树叶发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
16秒前
学习完成签到,获得积分10
16秒前
17秒前
19秒前
gffh完成签到,获得积分10
20秒前
Hello应助科研鸟采纳,获得10
20秒前
20秒前
海盗船长完成签到,获得积分10
21秒前
mengdewen发布了新的文献求助10
21秒前
22秒前
23秒前
甜美的成败完成签到,获得积分10
23秒前
yanyl完成签到 ,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420