亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of the Diagnostic Accuracy of Mammogram-based Deep Learning and Traditional Breast Cancer Risk Models in Patients Who Underwent Supplemental Screening with MRI

医学 乳腺癌 乳房磁振造影 放射科 癌症 乳腺癌筛查 磁共振成像 医学物理学 内科学 乳腺摄影术
作者
Leslie R. Lamb,Sarah F. Mercaldo,Kimeya F. Ghaderi,A. Simon Carney,Constance D. Lehman
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (3) 被引量:4
标识
DOI:10.1148/radiol.223077
摘要

Background Access to supplemental screening breast MRI is determined using traditional risk models, which are limited by modest predictive accuracy. Purpose To compare the diagnostic accuracy of a mammogram-based deep learning (DL) risk assessment model to that of traditional breast cancer risk models in patients who underwent supplemental screening with MRI. Materials and Methods This retrospective study included consecutive patients undergoing breast cancer screening MRI from September 2017 to September 2020 at four facilities. Risk was assessed using the Tyrer-Cuzick (TC) and National Cancer Institute Breast Cancer Risk Assessment Tool (BCRAT) 5-year and lifetime models as well as a DL 5-year model that generated a risk score based on the most recent screening mammogram. A risk score of 1.67% or higher defined increased risk for traditional 5-year models, a risk score of 20% or higher defined high risk for traditional lifetime models, and absolute scores of 2.3 or higher and 6.6 or higher defined increased and high risk, respectively, for the DL model. Model accuracy metrics including cancer detection rate (CDR) and positive predictive values (PPVs) (PPV of abnormal findings at screening [PPV1], PPV of biopsies recommended [PPV2], and PPV of biopsies performed [PPV3]) were compared using logistic regression models. Results This study included 2168 women who underwent 4247 high-risk screening MRI examinations (median age, 54 years [IQR, 48–60 years]). CDR (per 1000 examinations) was higher in patients at high risk according to the DL model (20.6 [95% CI: 11.8, 35.6]) than according to the TC (6.0 [95% CI: 2.9, 12.3]; P < .01) and BCRAT (6.8 [95% CI: 2.9, 15.8]; P = .04) lifetime models. PPV1, PPV2, and PPV3 were higher in patients identified as high risk by the DL model (PPV1, 14.6%; PPV2, 32.4%; PPV3, 36.4%) than those identified as high risk with the TC (PPV1, 5.0%; PPV2, 12.7%; PPV3, 13.5%; P value range, .02–.03) and BCRAT (PPV1, 5.5%; PPV2, 11.1%; PPV3, 12.5%; P value range, .02–.05) lifetime models. Conclusion Patients identified as high risk by a mammogram-based DL risk assessment model showed higher CDR at breast screening MRI than patients identified as high risk with traditional risk models. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bae in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助科研通管家采纳,获得10
1秒前
杳鸢应助科研通管家采纳,获得30
1秒前
杳鸢应助科研通管家采纳,获得30
1秒前
1秒前
2秒前
QR完成签到 ,获得积分10
2秒前
酷波er应助黄豆采纳,获得10
4秒前
Siren发布了新的文献求助10
6秒前
hyy关闭了hyy文献求助
14秒前
14秒前
24秒前
26秒前
27秒前
27秒前
衣蝉完成签到 ,获得积分10
31秒前
chen发布了新的文献求助10
32秒前
33秒前
36秒前
37秒前
黄豆发布了新的文献求助10
40秒前
隐形曼青应助呆萌沛蓝采纳,获得10
42秒前
49秒前
曾建完成签到 ,获得积分10
50秒前
呆萌沛蓝发布了新的文献求助10
54秒前
55秒前
帅气惜霜完成签到 ,获得积分10
56秒前
555完成签到 ,获得积分10
57秒前
59秒前
可爱初瑶发布了新的文献求助10
1分钟前
1分钟前
1分钟前
黄豆完成签到,获得积分20
1分钟前
大力奇迹发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Polymer72应助呆萌沛蓝采纳,获得10
1分钟前
耿舒婷完成签到,获得积分10
1分钟前
Ava应助renxiaoting采纳,获得10
1分钟前
123完成签到 ,获得积分10
1分钟前
爆米花应助Zhouzhou采纳,获得10
1分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392934
求助须知:如何正确求助?哪些是违规求助? 3003348
关于积分的说明 8808930
捐赠科研通 2690146
什么是DOI,文献DOI怎么找? 1473479
科研通“疑难数据库(出版商)”最低求助积分说明 681591
邀请新用户注册赠送积分活动 674515