纳米颗粒
化学
色谱法
肽
生物标志物发现
蛋白质组学
分子生物学
生物化学
纳米技术
材料科学
生物
基因
作者
Mingbo Peng,Yutian Zhou,Yi Wang,Zi Yi,Shenglan Li,Cuihong Wan
标识
DOI:10.1021/acs.jproteome.3c00608
摘要
The low-molecular-weight proteins (LMWP) in serum and plasma are related to various human diseases and can be valuable biomarkers. A small open reading frame-encoded peptide (SEP) is one kind of LMWP, which has been found to function in many bioprocesses and has also been found in human blood, making it a potential biomarker. The detection of LMWP by a mass spectrometry (MS)-based proteomic assay is often inhibited by the wide dynamic range of serum/plasma protein abundance. Nanoparticle protein coronas are a newly emerging protein enrichment method. To analyze SEPs in human serum, we have developed a protocol integrated with nanoparticle protein coronas and liquid chromatography (LC)/MS/MS. With three nanoparticles, TiO2, Fe3O4@SiO2, and Fe3O4@SiO2@TiO2, we identified 164 new SEPs in the human serum sample. Fe3O4@SiO2 and a nanoparticle mixture obtained the maximum number and the largest proportion of identified SEPs, respectively. Compared with acetonitrile-based extraction, nanoparticle protein coronas can cover more small proteins and SEPs. The magnetic nanoparticle is also fit for high-throughput parallel protein separation before LC/MS. This method is fast, efficient, reproducible, and easy to operate in 96-well plates and centrifuge tubes, which will benefit the research on SEPs and biomarkers.
科研通智能强力驱动
Strongly Powered by AbleSci AI