亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning

环境科学 生长季节 作物产量 气候变化 产量(工程) 贝叶斯概率 作物模拟模型 气候学 气象学 数学 统计 农学 地理 生态学 材料科学 冶金 生物 地质学
作者
Jianzheng Li,Ganqiong Li,Ligang Wang,Denghua Li,Hu Li,Chao Gao,Minghao Zhuang,Zhuang Jiayu,Han Zhou,Shiwei Xu,Zhengjiang Hu,Enli Wang
出处
期刊:Field Crops Research [Elsevier]
卷期号:302: 109102-109102 被引量:8
标识
DOI:10.1016/j.fcr.2023.109102
摘要

China produces more than 20 % of maize grain in the world, and Northeast China (NEC) accounts for ∼30 % of the nation's total maize production. Previous studies have used either climate data, satellite data, or crop growth model (CGM) to predict or forecast maize yield. However, maize is highly susceptible to the effect of extreme climate events (such as drought, heat) in NEC, and there is a lack of studies to predict/forecast maize yield by integrating climate data, satellite data, extreme climate events, and CGM-simulated data. We aim to develop a hybrid approach with machine learning to blend different sources of data (climate data, satellite data, extreme climate events) and process-based modelling results to improve predictive accuracy of maize yield in NEC. Using maize data from 44 sites during the period of 2000–2013 in NEC, we firstly optimized Agricultural Production System sIMulator (APSIM) using Differential Evolution Adaptive Metropolis combined with Gaussian likelihood function and Bayesian multiplication method. Next, we divided the growing season into five phases, and selected variables of different phases using exploratory data analysis and Random Forest. Then, we developed a hybrid model using Random Forest by blending of multiple sources of data and APSIM simulations to predict maize yield from the start to the end of the growing season, and quantified the relative contribution of predictors. A hybrid model developed with random forest by combining climate data, NDVI, extreme climate events and APSIM simulations can achieve high performance for predicting yield toward the end of the growing season. The accuracy of in-season yield prediction showed a linear increase with MAPE/KGE changing from 19 %/0.05 to 13 %/0.53 from start to end of the growing season. Yield forecasts are acceptable with RMSE/MAE of 1.20/1.01 Mg ha−1 (16 %/13 % of the observed mean yield) approximately one-month prior to harvest. The most important predictor that affect yield forecast was APSIM-simulated biomass or yield, and the most important extreme climate event was drought during early grain-filling stage. With the increasing availability of crop-related data, we expect that the in-season forecasting capacity of the proposed methodology could be further improved, and the methodology can be extended to other crops and other regions for yield forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Gavin发布了新的文献求助10
9秒前
batmanrobin完成签到,获得积分10
18秒前
愉快无施发布了新的文献求助10
50秒前
李健应助山南水北采纳,获得10
56秒前
1分钟前
小樊发布了新的文献求助30
1分钟前
含蓄亦凝完成签到,获得积分10
1分钟前
慕青应助小樊采纳,获得10
1分钟前
自由的梦露完成签到 ,获得积分10
1分钟前
山南水北完成签到 ,获得积分10
1分钟前
赘婿应助korchid采纳,获得10
2分钟前
段誉完成签到 ,获得积分10
2分钟前
cc完成签到,获得积分10
2分钟前
科研通AI2S应助木仔仔采纳,获得30
2分钟前
含蓄亦凝发布了新的文献求助10
2分钟前
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
orixero应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
深情安青应助48662采纳,获得10
3分钟前
4分钟前
4分钟前
wujiwuhui完成签到 ,获得积分10
4分钟前
小猫爱吃鱼完成签到,获得积分20
4分钟前
5分钟前
寒冷麦片发布了新的文献求助50
5分钟前
科研通AI2S应助Step采纳,获得10
5分钟前
cdu给linda的求助进行了留言
5分钟前
早睡早起完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
vv完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
任性蘑菇完成签到 ,获得积分10
5分钟前
好人一生平安完成签到,获得积分10
5分钟前
Nn发布了新的文献求助10
5分钟前
5分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126069
求助须知:如何正确求助?哪些是违规求助? 2776271
关于积分的说明 7729714
捐赠科研通 2431733
什么是DOI,文献DOI怎么找? 1292230
科研通“疑难数据库(出版商)”最低求助积分说明 622601
版权声明 600392