Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning

环境科学 生长季节 作物产量 气候变化 产量(工程) 贝叶斯概率 作物模拟模型 气候学 气象学 数学 统计 农学 地理 生态学 材料科学 冶金 生物 地质学
作者
Jianzheng Li,Ganqiong Li,Ligang Wang,Denghua Li,Hu Li,Chao Gao,Minghao Zhuang,Zhuang Jiayu,Han Zhou,Shiwei Xu,Zhengjiang Hu,Enli Wang
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:302: 109102-109102 被引量:10
标识
DOI:10.1016/j.fcr.2023.109102
摘要

China produces more than 20 % of maize grain in the world, and Northeast China (NEC) accounts for ∼30 % of the nation's total maize production. Previous studies have used either climate data, satellite data, or crop growth model (CGM) to predict or forecast maize yield. However, maize is highly susceptible to the effect of extreme climate events (such as drought, heat) in NEC, and there is a lack of studies to predict/forecast maize yield by integrating climate data, satellite data, extreme climate events, and CGM-simulated data. We aim to develop a hybrid approach with machine learning to blend different sources of data (climate data, satellite data, extreme climate events) and process-based modelling results to improve predictive accuracy of maize yield in NEC. Using maize data from 44 sites during the period of 2000–2013 in NEC, we firstly optimized Agricultural Production System sIMulator (APSIM) using Differential Evolution Adaptive Metropolis combined with Gaussian likelihood function and Bayesian multiplication method. Next, we divided the growing season into five phases, and selected variables of different phases using exploratory data analysis and Random Forest. Then, we developed a hybrid model using Random Forest by blending of multiple sources of data and APSIM simulations to predict maize yield from the start to the end of the growing season, and quantified the relative contribution of predictors. A hybrid model developed with random forest by combining climate data, NDVI, extreme climate events and APSIM simulations can achieve high performance for predicting yield toward the end of the growing season. The accuracy of in-season yield prediction showed a linear increase with MAPE/KGE changing from 19 %/0.05 to 13 %/0.53 from start to end of the growing season. Yield forecasts are acceptable with RMSE/MAE of 1.20/1.01 Mg ha−1 (16 %/13 % of the observed mean yield) approximately one-month prior to harvest. The most important predictor that affect yield forecast was APSIM-simulated biomass or yield, and the most important extreme climate event was drought during early grain-filling stage. With the increasing availability of crop-related data, we expect that the in-season forecasting capacity of the proposed methodology could be further improved, and the methodology can be extended to other crops and other regions for yield forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
干饭虫应助阿宝采纳,获得10
1秒前
文静青梦发布了新的文献求助10
1秒前
一叶知秋应助SYSUer采纳,获得10
1秒前
文献互助发布了新的文献求助10
2秒前
will发布了新的文献求助10
3秒前
4秒前
xxl完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
江江发布了新的文献求助10
7秒前
小丽完成签到,获得积分10
8秒前
Lucas应助Winter采纳,获得10
8秒前
阿晨发布了新的文献求助10
8秒前
JamesPei应助文静青梦采纳,获得10
9秒前
9秒前
陈业伟发布了新的文献求助10
10秒前
小白白发布了新的文献求助10
10秒前
所所应助嗨波采纳,获得10
11秒前
超级的丹琴完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
爆米花应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
浮游应助liuhanchi采纳,获得10
15秒前
我是老大应助liuhanchi采纳,获得10
15秒前
16秒前
传奇3应助小白白采纳,获得10
16秒前
17秒前
科研通AI6应助优雅草莓采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941008
求助须知:如何正确求助?哪些是违规求助? 4207071
关于积分的说明 13076503
捐赠科研通 3985864
什么是DOI,文献DOI怎么找? 2182332
邀请新用户注册赠送积分活动 1197889
关于科研通互助平台的介绍 1110237