Predicting maize yield in Northeast China by a hybrid approach combining biophysical modelling and machine learning

环境科学 生长季节 作物产量 气候变化 产量(工程) 贝叶斯概率 作物模拟模型 气候学 气象学 数学 统计 农学 地理 生态学 冶金 材料科学 地质学 生物
作者
Jianzheng Li,Ganqiong Li,Ligang Wang,Denghua Li,Hu Li,Chao Gao,Minghao Zhuang,Zhuang Jiayu,Han Zhou,Shiwei Xu,Zhengjiang Hu,Enli Wang
出处
期刊:Field Crops Research [Elsevier BV]
卷期号:302: 109102-109102 被引量:10
标识
DOI:10.1016/j.fcr.2023.109102
摘要

China produces more than 20 % of maize grain in the world, and Northeast China (NEC) accounts for ∼30 % of the nation's total maize production. Previous studies have used either climate data, satellite data, or crop growth model (CGM) to predict or forecast maize yield. However, maize is highly susceptible to the effect of extreme climate events (such as drought, heat) in NEC, and there is a lack of studies to predict/forecast maize yield by integrating climate data, satellite data, extreme climate events, and CGM-simulated data. We aim to develop a hybrid approach with machine learning to blend different sources of data (climate data, satellite data, extreme climate events) and process-based modelling results to improve predictive accuracy of maize yield in NEC. Using maize data from 44 sites during the period of 2000–2013 in NEC, we firstly optimized Agricultural Production System sIMulator (APSIM) using Differential Evolution Adaptive Metropolis combined with Gaussian likelihood function and Bayesian multiplication method. Next, we divided the growing season into five phases, and selected variables of different phases using exploratory data analysis and Random Forest. Then, we developed a hybrid model using Random Forest by blending of multiple sources of data and APSIM simulations to predict maize yield from the start to the end of the growing season, and quantified the relative contribution of predictors. A hybrid model developed with random forest by combining climate data, NDVI, extreme climate events and APSIM simulations can achieve high performance for predicting yield toward the end of the growing season. The accuracy of in-season yield prediction showed a linear increase with MAPE/KGE changing from 19 %/0.05 to 13 %/0.53 from start to end of the growing season. Yield forecasts are acceptable with RMSE/MAE of 1.20/1.01 Mg ha−1 (16 %/13 % of the observed mean yield) approximately one-month prior to harvest. The most important predictor that affect yield forecast was APSIM-simulated biomass or yield, and the most important extreme climate event was drought during early grain-filling stage. With the increasing availability of crop-related data, we expect that the in-season forecasting capacity of the proposed methodology could be further improved, and the methodology can be extended to other crops and other regions for yield forecast.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kaia发布了新的文献求助10
1秒前
woshidahunzi发布了新的文献求助10
1秒前
小冯完成签到 ,获得积分10
1秒前
penghuiye完成签到,获得积分10
1秒前
赘婿应助长情霸采纳,获得10
1秒前
zhengke924发布了新的文献求助10
1秒前
帅哥吴克完成签到,获得积分10
1秒前
领导范儿应助小木木采纳,获得10
2秒前
cheryl完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
Karma完成签到,获得积分10
3秒前
呆呆完成签到,获得积分10
4秒前
121发布了新的文献求助10
4秒前
mxq完成签到,获得积分10
5秒前
深情安青应助aaa采纳,获得10
5秒前
JHL发布了新的文献求助10
5秒前
sxy完成签到,获得积分10
6秒前
6秒前
6秒前
娃娃菜发布了新的文献求助10
7秒前
活力的冬云完成签到,获得积分10
7秒前
Karma发布了新的文献求助10
7秒前
南城花开完成签到 ,获得积分10
8秒前
小蘑菇应助飘飘素晴采纳,获得10
9秒前
9秒前
yanyimeng完成签到,获得积分10
9秒前
cc发布了新的文献求助20
9秒前
科研通AI2S应助孤独梦安采纳,获得10
9秒前
RW乾完成签到,获得积分10
9秒前
10秒前
10秒前
小鲤鱼在睡觉完成签到,获得积分10
11秒前
abner发布了新的文献求助10
11秒前
蓬溪霍建华完成签到,获得积分10
12秒前
12秒前
苗条映菱完成签到,获得积分10
12秒前
an完成签到,获得积分10
12秒前
aaa完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960479
求助须知:如何正确求助?哪些是违规求助? 3506634
关于积分的说明 11131585
捐赠科研通 3238880
什么是DOI,文献DOI怎么找? 1789914
邀请新用户注册赠送积分活动 872039
科研通“疑难数据库(出版商)”最低求助积分说明 803124