亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Driver Distraction Behavior Detection Method Based on Self-Supervised Learning With Masked Image Modeling

计算机科学 分散注意力 人工智能 卷积神经网络 机器学习 分心驾驶 深度学习 监督学习 模式识别(心理学) 人工神经网络 神经科学 生物
作者
Yingzhi Zhang,Taiguo Li,Chao Li,Xiaojun Zhou
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/jiot.2023.3308921
摘要

Driver distraction causes a significant number of traffic accidents every year, resulting in economic losses and casualties. Currently, the level of automation in commercial vehicles is far from completely unmanned, and drivers still play an important role in operating and controlling the vehicle. Therefore, driver distraction behavior detection is crucial for road safety. At present, driver distraction detection primarily relies on traditional convolutional neural networks (CNN) and supervised learning methods. However, there are still challenges such as the high cost of labeled datasets, limited ability to capture high-level semantic information, and weak generalization performance. In order to solve these problems, this paper proposes a new self-supervised learning method based on masked image modeling for driver distraction behavior detection. Firstly, a self-supervised learning framework for masked image modeling (MIM) is introduced to solve the serious human and material consumption issues caused by dataset labeling. Secondly, the Swin Transformer is employed as an encoder. Performance is enhanced by reconfiguring the Swin Transformer block and adjusting the distribution of the number of window multi-head self-attention (W-MSA) and shifted window multi-head self-attention (SW-MSA) detection heads across all stages, which leads to model more lightening. Finally, various data augmentation strategies are used along with the best random masking strategy to strengthen the model’s recognition and generalization ability. Test results on a large-scale driver distraction behavior dataset show that the self-supervised learning method proposed in this paper achieves an accuracy of 99.60 approximating the excellent performance of advanced supervised learning methods. Our code is publicly available at github.com/Rocky1salady-killer/SL-DDBD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助飞快的丸子采纳,获得10
3秒前
美罗培南完成签到,获得积分10
6秒前
枫叶完成签到,获得积分10
8秒前
爱撒娇的曼凝完成签到,获得积分10
10秒前
YangMengJing_完成签到,获得积分10
13秒前
结实凌瑶完成签到 ,获得积分10
17秒前
xjcy应助科研那些年采纳,获得10
22秒前
承序完成签到,获得积分10
28秒前
两个我完成签到 ,获得积分10
28秒前
wanci应助爱听歌凤灵采纳,获得10
33秒前
38秒前
羽心完成签到,获得积分10
40秒前
NexusExplorer应助羽心采纳,获得10
45秒前
犹豫的踏歌完成签到,获得积分10
57秒前
59秒前
ZLL发布了新的文献求助10
1分钟前
1分钟前
1分钟前
李健应助jinmuna采纳,获得10
1分钟前
1004完成签到,获得积分10
1分钟前
一次过发布了新的文献求助10
1分钟前
高兴电脑应助baiyixuan采纳,获得20
1分钟前
ming应助科研那些年采纳,获得10
1分钟前
chen完成签到 ,获得积分10
1分钟前
1分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
1分钟前
1分钟前
SciGPT应助111采纳,获得10
1分钟前
一次过完成签到,获得积分20
1分钟前
tuanheqi应助snah采纳,获得150
1分钟前
Billy应助mmyhn采纳,获得30
1分钟前
11发布了新的文献求助30
1分钟前
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
111完成签到,获得积分10
1分钟前
ming应助科研那些年采纳,获得10
2分钟前
Diamond完成签到 ,获得积分10
2分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294412
求助须知:如何正确求助?哪些是违规求助? 2930341
关于积分的说明 8445933
捐赠科研通 2602598
什么是DOI,文献DOI怎么找? 1420666
科研通“疑难数据库(出版商)”最低求助积分说明 660559
邀请新用户注册赠送积分活动 643423