已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Object localization methodology in occluded agricultural environments through deep learning and active sensing

人工智能 计算机视觉 机器人 倾斜(摄像机) 计算机科学 偏移量(计算机科学) 目标检测 数学 模式识别(心理学) 几何学 程序设计语言
作者
Teng Sun,Wen Zhang,Zhonghua Miao,Zhe Zhang,Nan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108141-108141 被引量:18
标识
DOI:10.1016/j.compag.2023.108141
摘要

The predominance of branch and leaf shade in agricultural environments presents a barrier for accurate target recognition. Particularly for picking robots, precise localization of the picking object is essential. For this purpose, this paper proposes detection and localization methods based on deep learning and active sensing for harvesting robots in real-world environments with occlusion and varying lighting conditions. Using a deep learning network, the detection method firstly extracts the peduncle and fruit regions; the fruit region is then used to calculate the occlusion rate and the offset distance of the peduncle relative to the fruit. With such information, the robot arm adjusts the camera's field of view to perform multiple recognitions until the confidence is satisfied. Furthermore, to solve the picking problem caused by the peduncle's random tilting, this paper proposes a method to calculate the peduncle's tilt angle for controlling the end-effector to make the corresponding angle rotation. The robot arm and its end-effector are directed to complete the harvesting with the picking point location and tilt angle. In this study, data collection, detection and picking tests were implemented in the field, the results indicated that the method obtained an average successful picking rate of 90% after 300 trials, the error between the estimated occlusion ratio and the genuine value is 16% in average, and the active sensing method has improved the confidence score in occluded situations by over 50%. The proposed active methods have a 33% increase in precision and a 43% increase in efficiency compared to constant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研顺利啦采纳,获得10
4秒前
牙线棒棒哒完成签到 ,获得积分10
5秒前
liwu完成签到 ,获得积分10
5秒前
6秒前
Linson完成签到,获得积分0
7秒前
失眠呆呆鱼完成签到 ,获得积分10
7秒前
明朗完成签到 ,获得积分10
8秒前
czh应助dinner采纳,获得10
8秒前
学术djw完成签到,获得积分10
9秒前
三水发布了新的文献求助10
9秒前
彭于晏应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
量子星尘发布了新的文献求助10
12秒前
旺仔发布了新的文献求助10
14秒前
17秒前
21秒前
洁净雨柏发布了新的文献求助30
22秒前
ypyue完成签到,获得积分10
25秒前
知足的憨人*-*完成签到,获得积分10
25秒前
26秒前
susu发布了新的文献求助10
26秒前
alan完成签到 ,获得积分10
27秒前
朴实的热狗完成签到,获得积分10
27秒前
29秒前
31秒前
nature发布了新的文献求助10
32秒前
知足的憨人丫丫完成签到,获得积分10
32秒前
夏夏完成签到 ,获得积分10
33秒前
洁净雨柏完成签到,获得积分10
34秒前
朴素的紫安完成签到 ,获得积分10
34秒前
舒适静丹完成签到,获得积分10
34秒前
SASI完成签到 ,获得积分10
36秒前
舒适静丹发布了新的文献求助10
36秒前
科研通AI5应助彼岸花开采纳,获得50
40秒前
仙乐完成签到,获得积分10
42秒前
笨笨的荧荧完成签到 ,获得积分10
44秒前
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520674
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877861
科研通“疑难数据库(出版商)”最低求助积分说明 806595