Object localization methodology in occluded agricultural environments through deep learning and active sensing

人工智能 计算机视觉 机器人 倾斜(摄像机) 计算机科学 偏移量(计算机科学) 目标检测 数学 模式识别(心理学) 几何学 程序设计语言
作者
Teng Sun,Wen Zhang,Zhonghua Miao,Zhe Zhang,Nan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108141-108141 被引量:18
标识
DOI:10.1016/j.compag.2023.108141
摘要

The predominance of branch and leaf shade in agricultural environments presents a barrier for accurate target recognition. Particularly for picking robots, precise localization of the picking object is essential. For this purpose, this paper proposes detection and localization methods based on deep learning and active sensing for harvesting robots in real-world environments with occlusion and varying lighting conditions. Using a deep learning network, the detection method firstly extracts the peduncle and fruit regions; the fruit region is then used to calculate the occlusion rate and the offset distance of the peduncle relative to the fruit. With such information, the robot arm adjusts the camera's field of view to perform multiple recognitions until the confidence is satisfied. Furthermore, to solve the picking problem caused by the peduncle's random tilting, this paper proposes a method to calculate the peduncle's tilt angle for controlling the end-effector to make the corresponding angle rotation. The robot arm and its end-effector are directed to complete the harvesting with the picking point location and tilt angle. In this study, data collection, detection and picking tests were implemented in the field, the results indicated that the method obtained an average successful picking rate of 90% after 300 trials, the error between the estimated occlusion ratio and the genuine value is 16% in average, and the active sensing method has improved the confidence score in occluded situations by over 50%. The proposed active methods have a 33% increase in precision and a 43% increase in efficiency compared to constant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lee完成签到,获得积分10
1秒前
努力哥发布了新的文献求助10
1秒前
leslie发布了新的文献求助10
2秒前
3秒前
orca发布了新的文献求助10
3秒前
深情安青应助melody采纳,获得10
3秒前
Jasper应助阿萍采纳,获得10
4秒前
4秒前
lsz发布了新的文献求助10
6秒前
li完成签到,获得积分10
6秒前
888完成签到 ,获得积分10
6秒前
6秒前
熹熹发布了新的文献求助10
7秒前
聪慧紫菱发布了新的文献求助10
7秒前
虚拟的半梦完成签到,获得积分10
7秒前
8秒前
赖风娇发布了新的文献求助10
8秒前
jli1856完成签到 ,获得积分10
9秒前
彩色的誉完成签到,获得积分10
10秒前
milv5完成签到,获得积分10
11秒前
成就溪灵完成签到,获得积分10
11秒前
leeyh完成签到,获得积分10
11秒前
12秒前
活力的乞完成签到,获得积分10
12秒前
kavins凯旋发布了新的文献求助10
13秒前
永远永远完成签到,获得积分10
13秒前
Ava应助不吃鸡蛋采纳,获得10
13秒前
勤奋帽子发布了新的文献求助10
14秒前
14秒前
14秒前
聪慧紫菱完成签到,获得积分10
14秒前
leeyh发布了新的文献求助10
14秒前
华仔应助leslie采纳,获得10
15秒前
柿子发布了新的文献求助10
15秒前
16秒前
打打应助JIANGNANYAN采纳,获得10
16秒前
舒心储完成签到,获得积分10
18秒前
熹熹完成签到,获得积分10
18秒前
now发布了新的文献求助10
18秒前
Vvvmi发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968638
求助须知:如何正确求助?哪些是违规求助? 4225941
关于积分的说明 13161018
捐赠科研通 4013031
什么是DOI,文献DOI怎么找? 2195868
邀请新用户注册赠送积分活动 1209298
关于科研通互助平台的介绍 1123338