Object localization methodology in occluded agricultural environments through deep learning and active sensing

人工智能 计算机视觉 机器人 倾斜(摄像机) 计算机科学 偏移量(计算机科学) 目标检测 数学 模式识别(心理学) 几何学 程序设计语言
作者
Teng Sun,Wen Zhang,Zhonghua Miao,Zhe Zhang,Nan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108141-108141 被引量:18
标识
DOI:10.1016/j.compag.2023.108141
摘要

The predominance of branch and leaf shade in agricultural environments presents a barrier for accurate target recognition. Particularly for picking robots, precise localization of the picking object is essential. For this purpose, this paper proposes detection and localization methods based on deep learning and active sensing for harvesting robots in real-world environments with occlusion and varying lighting conditions. Using a deep learning network, the detection method firstly extracts the peduncle and fruit regions; the fruit region is then used to calculate the occlusion rate and the offset distance of the peduncle relative to the fruit. With such information, the robot arm adjusts the camera's field of view to perform multiple recognitions until the confidence is satisfied. Furthermore, to solve the picking problem caused by the peduncle's random tilting, this paper proposes a method to calculate the peduncle's tilt angle for controlling the end-effector to make the corresponding angle rotation. The robot arm and its end-effector are directed to complete the harvesting with the picking point location and tilt angle. In this study, data collection, detection and picking tests were implemented in the field, the results indicated that the method obtained an average successful picking rate of 90% after 300 trials, the error between the estimated occlusion ratio and the genuine value is 16% in average, and the active sensing method has improved the confidence score in occluded situations by over 50%. The proposed active methods have a 33% increase in precision and a 43% increase in efficiency compared to constant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞舞伤寒发布了新的文献求助20
刚刚
曾珍发布了新的文献求助10
2秒前
qwe完成签到,获得积分10
3秒前
Xdz完成签到 ,获得积分10
3秒前
cai完成签到 ,获得积分10
6秒前
雨恋凡尘完成签到,获得积分0
9秒前
羊羔肉完成签到,获得积分10
11秒前
胖丁完成签到,获得积分10
11秒前
笨笨凡松完成签到,获得积分10
14秒前
飞舞伤寒完成签到,获得积分10
14秒前
贝利亚完成签到,获得积分10
16秒前
喜多多的小眼静完成签到 ,获得积分10
16秒前
16秒前
Dsunflower完成签到 ,获得积分10
17秒前
羊羔肉发布了新的文献求助50
18秒前
半夏发布了新的文献求助10
18秒前
19秒前
19秒前
大橙子发布了新的文献求助10
20秒前
星辰大海应助贝利亚采纳,获得10
20秒前
21秒前
sunny心晴完成签到 ,获得积分10
23秒前
独特的凝云完成签到 ,获得积分10
23秒前
TheDing完成签到,获得积分10
24秒前
传奇3应助lenetivy采纳,获得10
26秒前
积极的忆曼完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
27秒前
酒剑仙完成签到,获得积分10
27秒前
YANGMJ完成签到,获得积分10
28秒前
xialuoke完成签到,获得积分10
28秒前
scinature发布了新的文献求助10
29秒前
29秒前
29秒前
小洪俊熙完成签到,获得积分10
31秒前
狄百招完成签到 ,获得积分10
31秒前
UU完成签到,获得积分10
32秒前
半夏完成签到,获得积分10
34秒前
Judy完成签到 ,获得积分10
34秒前
跳跳糖完成签到,获得积分10
35秒前
JS完成签到,获得积分10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038201
求助须知:如何正确求助?哪些是违规求助? 3575940
关于积分的说明 11373987
捐赠科研通 3305747
什么是DOI,文献DOI怎么找? 1819274
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022