亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Object localization methodology in occluded agricultural environments through deep learning and active sensing

人工智能 计算机视觉 机器人 倾斜(摄像机) 计算机科学 偏移量(计算机科学) 目标检测 数学 模式识别(心理学) 几何学 程序设计语言
作者
Teng Sun,Wen Zhang,Miao Zhang,Zhe Zhang,Nan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108141-108141 被引量:1
标识
DOI:10.1016/j.compag.2023.108141
摘要

The predominance of branch and leaf shade in agricultural environments presents a barrier for accurate target recognition. Particularly for picking robots, precise localization of the picking object is essential. For this purpose, this paper proposes detection and localization methods based on deep learning and active sensing for harvesting robots in real-world environments with occlusion and varying lighting conditions. Using a deep learning network, the detection method firstly extracts the peduncle and fruit regions; the fruit region is then used to calculate the occlusion rate and the offset distance of the peduncle relative to the fruit. With such information, the robot arm adjusts the camera's field of view to perform multiple recognitions until the confidence is satisfied. Furthermore, to solve the picking problem caused by the peduncle's random tilting, this paper proposes a method to calculate the peduncle's tilt angle for controlling the end-effector to make the corresponding angle rotation. The robot arm and its end-effector are directed to complete the harvesting with the picking point location and tilt angle. In this study, data collection, detection and picking tests were implemented in the field, the results indicated that the method obtained an average successful picking rate of 90% after 300 trials, the error between the estimated occlusion ratio and the genuine value is 16% in average, and the active sensing method has improved the confidence score in occluded situations by over 50%. The proposed active methods have a 33% increase in precision and a 43% increase in efficiency compared to constant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得30
13秒前
13秒前
mushanes完成签到 ,获得积分10
17秒前
orixero应助结实的虔纹采纳,获得30
18秒前
21秒前
EasonL完成签到,获得积分10
27秒前
程住气完成签到 ,获得积分10
46秒前
52秒前
akkk626完成签到 ,获得积分10
52秒前
卧镁铀钳完成签到 ,获得积分10
55秒前
DD完成签到 ,获得积分10
57秒前
59秒前
1分钟前
梵莫完成签到,获得积分10
1分钟前
1分钟前
哭泣秋蝶发布了新的文献求助10
1分钟前
1分钟前
爆米花应助观澜采纳,获得10
1分钟前
Ava应助哲别采纳,获得10
1分钟前
Elena完成签到,获得积分10
1分钟前
1分钟前
认真的香氛完成签到,获得积分20
1分钟前
1分钟前
韶纹发布了新的文献求助10
1分钟前
1分钟前
哲别发布了新的文献求助10
1分钟前
感动的一凤完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助哲别采纳,获得10
1分钟前
liuyingyun发布了新的文献求助10
1分钟前
苏苏完成签到,获得积分10
2分钟前
2分钟前
研友_ZbP41L完成签到 ,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
orixero应助科研通管家采纳,获得50
2分钟前
SciGPT应助科研通管家采纳,获得30
2分钟前
大傻春完成签到,获得积分10
2分钟前
Rita发布了新的文献求助10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784040
捐赠科研通 2444012
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989