Object localization methodology in occluded agricultural environments through deep learning and active sensing

人工智能 计算机视觉 机器人 倾斜(摄像机) 计算机科学 偏移量(计算机科学) 目标检测 数学 模式识别(心理学) 几何学 程序设计语言
作者
Teng Sun,Wen Zhang,Zhonghua Miao,Zhe Zhang,Nan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:212: 108141-108141 被引量:18
标识
DOI:10.1016/j.compag.2023.108141
摘要

The predominance of branch and leaf shade in agricultural environments presents a barrier for accurate target recognition. Particularly for picking robots, precise localization of the picking object is essential. For this purpose, this paper proposes detection and localization methods based on deep learning and active sensing for harvesting robots in real-world environments with occlusion and varying lighting conditions. Using a deep learning network, the detection method firstly extracts the peduncle and fruit regions; the fruit region is then used to calculate the occlusion rate and the offset distance of the peduncle relative to the fruit. With such information, the robot arm adjusts the camera's field of view to perform multiple recognitions until the confidence is satisfied. Furthermore, to solve the picking problem caused by the peduncle's random tilting, this paper proposes a method to calculate the peduncle's tilt angle for controlling the end-effector to make the corresponding angle rotation. The robot arm and its end-effector are directed to complete the harvesting with the picking point location and tilt angle. In this study, data collection, detection and picking tests were implemented in the field, the results indicated that the method obtained an average successful picking rate of 90% after 300 trials, the error between the estimated occlusion ratio and the genuine value is 16% in average, and the active sensing method has improved the confidence score in occluded situations by over 50%. The proposed active methods have a 33% increase in precision and a 43% increase in efficiency compared to constant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
M二以发布了新的文献求助10
刚刚
qiyun发布了新的文献求助10
2秒前
老实雁蓉完成签到,获得积分10
2秒前
2秒前
许起眸发布了新的文献求助10
3秒前
呆萌的源智完成签到 ,获得积分10
3秒前
小余同学发布了新的文献求助10
3秒前
英勇的天蓝完成签到 ,获得积分10
4秒前
三条馋猫发布了新的文献求助10
4秒前
隐形书白发布了新的文献求助10
5秒前
loseyourself完成签到,获得积分10
5秒前
陈大大完成签到,获得积分10
6秒前
6秒前
负责的调料汁完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
倩Q完成签到,获得积分10
9秒前
搞怪莫茗发布了新的文献求助10
10秒前
石中酒完成签到 ,获得积分10
10秒前
Lucas应助顺心火龙果采纳,获得10
10秒前
无限数据线完成签到,获得积分10
12秒前
14秒前
小蘑菇应助等光来采纳,获得10
14秒前
乐乐应助奔波儿灞采纳,获得10
16秒前
AOPs完成签到,获得积分10
17秒前
欧维发布了新的文献求助10
17秒前
热爱科研的刘完成签到,获得积分10
19秒前
无辜的醉波完成签到,获得积分10
19秒前
大模型应助干姜采纳,获得10
20秒前
852应助隐形书白采纳,获得10
20秒前
20秒前
23秒前
ljs完成签到,获得积分10
24秒前
Yen发布了新的文献求助10
24秒前
今后应助vvvaee采纳,获得10
25秒前
25秒前
许起眸给许起眸的求助进行了留言
26秒前
楠LEE发布了新的文献求助10
27秒前
27秒前
梦回与她完成签到,获得积分10
30秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance 500
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970008
求助须知:如何正确求助?哪些是违规求助? 3514711
关于积分的说明 11175563
捐赠科研通 3250077
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875630
科研通“疑难数据库(出版商)”最低求助积分说明 804931