清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Object localization methodology in occluded agricultural environments through deep learning and active sensing

人工智能 计算机视觉 机器人 倾斜(摄像机) 计算机科学 偏移量(计算机科学) 目标检测 数学 模式识别(心理学) 几何学 程序设计语言
作者
Teng Sun,Wen Zhang,Zhonghua Miao,Zhe Zhang,Nan Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:212: 108141-108141 被引量:18
标识
DOI:10.1016/j.compag.2023.108141
摘要

The predominance of branch and leaf shade in agricultural environments presents a barrier for accurate target recognition. Particularly for picking robots, precise localization of the picking object is essential. For this purpose, this paper proposes detection and localization methods based on deep learning and active sensing for harvesting robots in real-world environments with occlusion and varying lighting conditions. Using a deep learning network, the detection method firstly extracts the peduncle and fruit regions; the fruit region is then used to calculate the occlusion rate and the offset distance of the peduncle relative to the fruit. With such information, the robot arm adjusts the camera's field of view to perform multiple recognitions until the confidence is satisfied. Furthermore, to solve the picking problem caused by the peduncle's random tilting, this paper proposes a method to calculate the peduncle's tilt angle for controlling the end-effector to make the corresponding angle rotation. The robot arm and its end-effector are directed to complete the harvesting with the picking point location and tilt angle. In this study, data collection, detection and picking tests were implemented in the field, the results indicated that the method obtained an average successful picking rate of 90% after 300 trials, the error between the estimated occlusion ratio and the genuine value is 16% in average, and the active sensing method has improved the confidence score in occluded situations by over 50%. The proposed active methods have a 33% increase in precision and a 43% increase in efficiency compared to constant methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观地sail完成签到,获得积分10
25秒前
清脆的大开完成签到,获得积分10
45秒前
汪汪淬冰冰完成签到,获得积分10
52秒前
SimonShaw完成签到,获得积分10
1分钟前
香菜张完成签到,获得积分10
1分钟前
BowieHuang应助优秀的珊珊采纳,获得10
1分钟前
明理思山完成签到 ,获得积分20
1分钟前
丘比特应助RC采纳,获得10
1分钟前
2分钟前
RC发布了新的文献求助10
2分钟前
3分钟前
脑洞疼应助RC采纳,获得10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
juan完成签到 ,获得积分0
4分钟前
占若完成签到,获得积分20
4分钟前
4分钟前
冰凌心恋完成签到,获得积分10
4分钟前
披着羊皮的狼完成签到 ,获得积分10
4分钟前
占若发布了新的文献求助10
4分钟前
LINDENG2004完成签到 ,获得积分10
4分钟前
4分钟前
RC发布了新的文献求助10
4分钟前
英姑应助RC采纳,获得10
4分钟前
徐团伟完成签到 ,获得积分10
5分钟前
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
紫熊完成签到,获得积分10
5分钟前
BowieHuang应助优秀的珊珊采纳,获得10
5分钟前
6分钟前
孺子牛完成签到,获得积分10
6分钟前
乔杰完成签到 ,获得积分10
6分钟前
孺子牛发布了新的文献求助10
6分钟前
领导范儿应助孺子牛采纳,获得10
6分钟前
FIN发布了新的文献求助50
6分钟前
6分钟前
研友_nxw2xL完成签到,获得积分10
6分钟前
Jj7完成签到,获得积分0
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590587
求助须知:如何正确求助?哪些是违规求助? 4674818
关于积分的说明 14795392
捐赠科研通 4633763
什么是DOI,文献DOI怎么找? 2532855
邀请新用户注册赠送积分活动 1501328
关于科研通互助平台的介绍 1468733