Towards integrated and fine-grained traffic forecasting: A Spatio-Temporal Heterogeneous Graph Transformer approach

计算机科学 交叉口(航空) 图形 数据挖掘 相互依存 运输工程 理论计算机科学 法学 政治学 工程类
作者
Guangyue Li,Zilong Zhao,Xiaogang Guo,Luliang Tang,Huazu Zhang,Jinghan Wang
出处
期刊:Information Fusion [Elsevier BV]
卷期号:102: 102063-102063 被引量:18
标识
DOI:10.1016/j.inffus.2023.102063
摘要

Fine-grained traffic forecasting is crucial for the management of urban transportation systems. Road segments and intersection turns, as vital elements of road networks, exhibit heterogeneous spatial structures, yet their traffic states are interconnected due to spatial proximity. The heterogeneity and interrelationships arising from different road network elements pose major challenges to accurate traffic forecasting. However, existing forecasting studies focus solely on bidirectional road segments, disregarding the relationships between roads and turns. To achieve integrated traffic forecasting that considers both road segments and intersection turns, we propose a novel Spatio-Temporal Heterogeneous Graph Transformer (STHGFormer). For road network representation, we innovatively define a Heterogeneous Road network Graph (HRG), which provides a comprehensive depiction of the complete traffic network and emphasizes its inherent heterogeneity. Then, we propose a Heterogeneous Spatial Embedding (HSE) module to encode road network information, including heterogeneous attributes and interactions in the HRG. Based on the spatial information encoded by HSE, a unified SpaFormer, serving as the spatial module of STHGFormer, captures the interdependencies between roads and turns across the entire traffic network. To mitigate the impact of high temporal fluctuation, we embed the Adaptive Soft Threshold (AST) module into TempFormer, which dynamically adjusts the threshold to enhance the analysis capability of complex temporal correlations. Experiments conducted on a real-world dataset from Wuhan, China, demonstrate that STHGFormer outperforms state-of-the-art methods, achieving a 6.1 % improvement in road forecasting and an 8.5 % improvement in turn forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8R3XdL发布了新的文献求助10
刚刚
淡淡代玉发布了新的文献求助30
1秒前
小二郎应助霸气以菱采纳,获得10
2秒前
开朗的睫毛膏完成签到,获得积分10
4秒前
君莫笑发布了新的文献求助10
6秒前
ww123完成签到,获得积分10
6秒前
ShenLi完成签到,获得积分10
7秒前
UY完成签到,获得积分10
7秒前
8秒前
ZQ发布了新的文献求助10
8秒前
烟花应助想人陪的语梦采纳,获得10
9秒前
娇气的白卉完成签到,获得积分10
9秒前
领导范儿应助ww123采纳,获得10
11秒前
12秒前
14秒前
14秒前
TZ完成签到 ,获得积分10
15秒前
15秒前
17秒前
小龙完成签到,获得积分10
17秒前
美丽的又菡完成签到,获得积分20
19秒前
Tigher发布了新的文献求助10
20秒前
20秒前
李爱国应助王睿采纳,获得10
20秒前
明亮的代荷完成签到,获得积分10
21秒前
97发布了新的文献求助10
21秒前
21秒前
24秒前
大个应助weiyi采纳,获得10
24秒前
传奇3应助真君山山长采纳,获得10
26秒前
大个应助lijing李静ustc采纳,获得10
27秒前
袁方正发布了新的文献求助10
27秒前
鸭鸭发布了新的文献求助10
28秒前
32秒前
32秒前
xyb关闭了xyb文献求助
34秒前
兴奋电脑完成签到,获得积分10
34秒前
hou完成签到 ,获得积分10
34秒前
霸气的思柔完成签到,获得积分10
35秒前
fanyueyue应助da_line采纳,获得10
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997687
求助须知:如何正确求助?哪些是违规求助? 3537226
关于积分的说明 11271044
捐赠科研通 3276377
什么是DOI,文献DOI怎么找? 1806965
邀请新用户注册赠送积分活动 883609
科研通“疑难数据库(出版商)”最低求助积分说明 809975