Towards integrated and fine-grained traffic forecasting: A Spatio-Temporal Heterogeneous Graph Transformer approach

计算机科学 交叉口(航空) 图形 数据挖掘 相互依存 运输工程 理论计算机科学 政治学 工程类 法学
作者
Guangyue Li,Zilong Zhao,Xiaogang Guo,Luliang Tang,Huazu Zhang,Jinghan Wang
出处
期刊:Information Fusion [Elsevier]
卷期号:102: 102063-102063 被引量:7
标识
DOI:10.1016/j.inffus.2023.102063
摘要

Fine-grained traffic forecasting is crucial for the management of urban transportation systems. Road segments and intersection turns, as vital elements of road networks, exhibit heterogeneous spatial structures, yet their traffic states are interconnected due to spatial proximity. The heterogeneity and interrelationships arising from different road network elements pose major challenges to accurate traffic forecasting. However, existing forecasting studies focus solely on bidirectional road segments, disregarding the relationships between roads and turns. To achieve integrated traffic forecasting that considers both road segments and intersection turns, we propose a novel Spatio-Temporal Heterogeneous Graph Transformer (STHGFormer). For road network representation, we innovatively define a Heterogeneous Road network Graph (HRG), which provides a comprehensive depiction of the complete traffic network and emphasizes its inherent heterogeneity. Then, we propose a Heterogeneous Spatial Embedding (HSE) module to encode road network information, including heterogeneous attributes and interactions in the HRG. Based on the spatial information encoded by HSE, a unified SpaFormer, serving as the spatial module of STHGFormer, captures the interdependencies between roads and turns across the entire traffic network. To mitigate the impact of high temporal fluctuation, we embed the Adaptive Soft Threshold (AST) module into TempFormer, which dynamically adjusts the threshold to enhance the analysis capability of complex temporal correlations. Experiments conducted on a real-world dataset from Wuhan, China, demonstrate that STHGFormer outperforms state-of-the-art methods, achieving a 6.1 % improvement in road forecasting and an 8.5 % improvement in turn forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助不爱洗澡的小玲采纳,获得10
1秒前
不配.应助RuiminXie采纳,获得10
3秒前
不爱吃醋发布了新的文献求助30
6秒前
9秒前
9秒前
10秒前
12秒前
Xulyun完成签到 ,获得积分10
12秒前
15秒前
可咳咳咳发布了新的文献求助10
15秒前
15秒前
我是老大应助科研通管家采纳,获得10
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得30
17秒前
ding应助科研通管家采纳,获得10
18秒前
18秒前
不配.应助科研通管家采纳,获得10
18秒前
itsserene应助科研通管家采纳,获得30
18秒前
义气雍发布了新的文献求助10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
思源应助科研通管家采纳,获得10
18秒前
18秒前
二哈应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
21秒前
21秒前
灵巧妙芙发布了新的文献求助10
23秒前
拾捌完成签到,获得积分10
23秒前
wk_sea完成签到,获得积分10
26秒前
x5kyi发布了新的文献求助30
27秒前
都会完成签到 ,获得积分10
28秒前
今后应助都是采纳,获得10
28秒前
西皮发布了新的文献求助10
28秒前
shining发布了新的文献求助10
30秒前
32秒前
我是老大应助jxy09156采纳,获得10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789658
关于积分的说明 7791830
捐赠科研通 2445993
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079