The Comparison of Machine Learning and Mechanistic In Vitro–In Vivo Extrapolation Models for the Prediction of Human Intrinsic Clearance

广告 生物信息学 基于生理学的药代动力学模型 数量结构-活动关系 外推法 体内 生物系统 计算生物学 药代动力学 计算机科学 化学 体外 机器学习 药理学 数学 生物 统计 生物化学 生物技术 基因
作者
Christopher Keefer,George Chang,Li Di,Nathaniel A. Woody,David A. Tess,Sarah M. Osgood,Brendon Kapinos,Jill Racich,Anthony Carlo,Amanda Balesano,Nicholas Ferguson,Christine C. Orozco,Larisa Zueva,Lina Luo
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:20 (11): 5616-5630 被引量:7
标识
DOI:10.1021/acs.molpharmaceut.3c00502
摘要

Accurate prediction of human pharmacokinetics (PK) remains one of the key objectives of drug metabolism and PK (DMPK) scientists in drug discovery projects. This is typically performed by using in vitro-in vivo extrapolation (IVIVE) based on mechanistic PK models. In recent years, machine learning (ML), with its ability to harness patterns from previous outcomes to predict future events, has gained increased popularity in application to absorption, distribution, metabolism, and excretion (ADME) sciences. This study compares the performance of various ML and mechanistic models for the prediction of human IV clearance for a large (645) set of diverse compounds with literature human IV PK data, as well as measured relevant in vitro end points. ML models were built using multiple approaches for the descriptors: (1) calculated physical properties and structural descriptors based on chemical structure alone (classical QSAR/QSPR); (2) in vitro measured inputs only with no structure-based descriptors (ML IVIVE); and (3) in silico ML IVIVE using in silico model predictions for the in vitro inputs. For the mechanistic models, well-stirred and parallel-tube liver models were considered with and without the use of empirical scaling factors and with and without renal clearance. The best ML model for the prediction of in vivo human intrinsic clearance (CLint) was an in vitro ML IVIVE model using only six in vitro inputs with an average absolute fold error (AAFE) of 2.5. The best mechanistic model used the parallel-tube liver model, with empirical scaling factors resulting in an AAFE of 2.8. The corresponding mechanistic model with full in silico inputs achieved an AAFE of 3.3. These relative performances of the models were confirmed with the prediction of 16 Pfizer drug candidates that were not part of the original data set. Results show that ML IVIVE models are comparable to or superior to their best mechanistic counterparts. We also show that ML IVIVE models can be used to derive insights into factors for the improvement of mechanistic PK prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐小蜜蜂应助XYN1采纳,获得10
刚刚
思源应助儒雅的斑马采纳,获得10
刚刚
刚刚
1秒前
1秒前
领导范儿应助陶醉的大炮采纳,获得30
2秒前
2秒前
大模型应助失眠的血茗采纳,获得10
3秒前
3秒前
liumx发布了新的文献求助10
3秒前
4秒前
王小思发布了新的文献求助10
5秒前
小蘑菇应助张佳明采纳,获得10
5秒前
一瓶罐发布了新的文献求助10
5秒前
6秒前
Orange应助马浩博采纳,获得10
6秒前
SUS发布了新的文献求助10
7秒前
顶刊收割机完成签到,获得积分10
9秒前
1117发布了新的文献求助10
9秒前
研友_VZG7GZ应助Z.one采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
孤独的狼完成签到,获得积分10
12秒前
lhyxz完成签到,获得积分20
12秒前
justsayit完成签到 ,获得积分10
13秒前
张不张发布了新的文献求助10
13秒前
独特的绯完成签到,获得积分10
13秒前
ttttt发布了新的文献求助10
15秒前
Jasper应助Gen_cexon采纳,获得10
15秒前
英勇雅琴完成签到,获得积分10
16秒前
粗心的雪青完成签到,获得积分10
16秒前
vicky完成签到,获得积分10
17秒前
17秒前
张佳明发布了新的文献求助10
17秒前
17秒前
羊羊羊发布了新的文献求助10
17秒前
katu发布了新的文献求助10
18秒前
余鱼鱼完成签到,获得积分10
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260841
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318187
捐赠科研通 2571677
什么是DOI,文献DOI怎么找? 1397150
科研通“疑难数据库(出版商)”最低求助积分说明 653663
邀请新用户注册赠送积分活动 632213