Coupled Surface-Confinement Effect and Pore Engineering in a Single-Fe-Atom Catalyst for Ultrafast Fenton-like Reaction with High-Valent Iron-Oxo Complex Oxidation

催化作用 化学 环境修复 介孔材料 降级(电信) 吸附 化学工程 光化学 纳米技术 材料科学 物理化学 污染 有机化学 生态学 电信 计算机科学 工程类 生物
作者
Bingkun Huang,Zelin Wu,Xinhao Wang,Xinyu Song,Hongyu Zhou,Heng Zhang,Peng Zhou,Wen Liu,Zhaokun Xiong,Bo Lai
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (41): 15667-15679 被引量:87
标识
DOI:10.1021/acs.est.3c05509
摘要

The nanoconfinement effect in Fenton-like reactions shows great potential in environmental remediation, but the construction of confinement structure and the corresponding mechanism are rarely elucidated systematically. Herein, we proposed a novel peroxymonosulfate (PMS) activation system employing the single Fe atom supported on mesoporous N-doped carbon (FeSA-MNC, specific surface area = 1520.9 m2/g), which could accelerate the catalytic oxidation process via the surface-confinement effect. The degradation activity of the confined system was remarkably increased by 34.6 times compared to its analogue unconfined system. The generation of almost 100% high-valent iron-oxo species was identified via 18O isotope-labeled experiments, quenching tests, and probe methods. The density functional theory illustrated that the surface-confinement effect narrows the gap between the d-band center and Fermi level of the single Fe atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for PMS activation. The surface-confinement system exhibited excellent pollutant degradation efficiency, robust resistance to coexisting matter, and adaptation of a wide pH range (3.0-11.0) and various temperature environments (5-40 °C). Finally, the FeSA-MNC/PMS system could achieve 100% sulfamethoxazole removal without significant performance decline after 10,000-bed volumes. This work provides novel and significant insights into the surface-confinement effect in Fenton-like chemistry and guides the design of superior oxidation systems for environmental remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助哲000采纳,获得10
1秒前
调皮的天真完成签到 ,获得积分10
1秒前
1ssd应助有风采纳,获得10
1秒前
1秒前
奇奇怪怪完成签到,获得积分10
2秒前
TanFT发布了新的文献求助10
2秒前
青鸟飞鱼完成签到,获得积分10
2秒前
吴吴发布了新的文献求助10
3秒前
ShengjuChen完成签到 ,获得积分10
3秒前
3秒前
CipherSage应助标致小伙采纳,获得10
3秒前
科研通AI5应助深爱不疑采纳,获得10
3秒前
艺术家脾气完成签到,获得积分10
4秒前
5秒前
unicornmed发布了新的文献求助10
5秒前
可爱的函函应助茶艺如何采纳,获得10
6秒前
江知之完成签到 ,获得积分0
6秒前
6秒前
8秒前
刻苦问柳发布了新的文献求助10
8秒前
酷酷平卉完成签到 ,获得积分10
8秒前
星辰大海应助吴吴采纳,获得30
8秒前
JTB发布了新的文献求助10
8秒前
BILNQPL发布了新的文献求助10
8秒前
兮遥遥完成签到 ,获得积分10
9秒前
9秒前
9秒前
丰知然应助轩辕德地采纳,获得10
10秒前
11秒前
吨吨喝水关注了科研通微信公众号
11秒前
酷波er应助某只橘猫君采纳,获得10
11秒前
11秒前
stt发布了新的文献求助10
11秒前
11秒前
Ling完成签到,获得积分10
11秒前
TanFT完成签到,获得积分10
12秒前
笙歌自若发布了新的文献求助10
12秒前
12秒前
CipherSage应助积极的凌波采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762