Generation of a Melanoma and Nevus Data Set From Unstandardized Clinical Photographs on the Internet

数据集 试验装置 卷积神经网络 人工智能 集合(抽象数据类型) 医学 判别式 计算机科学 互联网 模式识别(心理学) 黑色素瘤 机器学习 万维网 癌症研究 程序设计语言
作者
Soo Ick Cho,Cristián Navarrete‐Dechent,Roxana Daneshjou,Hye Soo Cho,Sung Eun Chang,Seong Hwan Kim,Jung‐Im Na,Seung Seog Han
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:159 (11): 1223-1223 被引量:7
标识
DOI:10.1001/jamadermatol.2023.3521
摘要

Importance Artificial intelligence (AI) training for diagnosing dermatologic images requires large amounts of clean data. Dermatologic images have different compositions, and many are inaccessible due to privacy concerns, which hinder the development of AI. Objective To build a training data set for discriminative and generative AI from unstandardized internet images of melanoma and nevus. Design, Setting, and Participants In this diagnostic study, a total of 5619 (CAN5600 data set) and 2006 (CAN2000 data set; a manually revised subset of CAN5600) cropped lesion images of either melanoma or nevus were semiautomatically annotated from approximately 500 000 photographs on the internet using convolutional neural networks (CNNs), region-based CNNs, and large mask inpainting. For unsupervised pretraining, 132 673 possible lesions (LESION130k data set) were also created with diversity by collecting images from 18 482 websites in approximately 80 countries. A total of 5000 synthetic images (GAN5000 data set) were generated using the generative adversarial network (StyleGAN2-ADA; training, CAN2000 data set; pretraining, LESION130k data set). Main Outcomes and Measures The area under the receiver operating characteristic curve (AUROC) for determining malignant neoplasms was analyzed. In each test, 1 of the 7 preexisting public data sets (total of 2312 images; including Edinburgh, an SNU subset, Asan test, Waterloo, 7-point criteria evaluation, PAD-UFES-20, and MED-NODE) was used as the test data set. Subsequently, a comparative study was conducted between the performance of the EfficientNet Lite0 CNN on the proposed data set and that trained on the remaining 6 preexisting data sets. Results The EfficientNet Lite0 CNN trained on the annotated or synthetic images achieved higher or equivalent mean (SD) AUROCs to the EfficientNet Lite0 trained using the pathologically confirmed public data sets, including CAN5600 (0.874 [0.042]; P = .02), CAN2000 (0.848 [0.027]; P = .08), and GAN5000 (0.838 [0.040]; P = .31 [Wilcoxon signed rank test]) and the preexisting data sets combined (0.809 [0.063]) by the benefits of increased size of the training data set. Conclusions and Relevance The synthetic data set in this diagnostic study was created using various AI technologies from internet images. A neural network trained on the created data set (CAN5600) performed better than the same network trained on preexisting data sets combined. Both the annotated (CAN5600 and LESION130k) and synthetic (GAN5000) data sets could be shared for AI training and consensus between physicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
519发布了新的文献求助10
刚刚
吴祥坤发布了新的文献求助10
刚刚
1秒前
1秒前
Akim应助gou采纳,获得10
1秒前
xueyan完成签到,获得积分10
2秒前
2秒前
2秒前
王富贵啊完成签到,获得积分10
2秒前
2秒前
3秒前
xiangeyedu完成签到,获得积分10
3秒前
雨前知了完成签到,获得积分10
3秒前
4秒前
4秒前
细腻沛萍发布了新的文献求助10
4秒前
科目三应助雨落and夏末采纳,获得10
5秒前
吴祥坤完成签到,获得积分10
5秒前
十二完成签到,获得积分10
5秒前
只A不B发布了新的文献求助150
6秒前
Jc完成签到 ,获得积分10
6秒前
听雨完成签到,获得积分10
6秒前
1111111111发布了新的文献求助10
6秒前
FDY完成签到,获得积分10
7秒前
甜叶菊发布了新的文献求助10
7秒前
8秒前
粗犷的抽屉完成签到,获得积分10
8秒前
8秒前
anonym11发布了新的文献求助20
8秒前
8秒前
疯狂的科研人完成签到,获得积分10
9秒前
9秒前
10秒前
科研机器发布了新的文献求助10
11秒前
11秒前
欢呼的鸡翅完成签到 ,获得积分10
12秒前
12秒前
13秒前
xxxx发布了新的文献求助10
13秒前
叮当完成签到,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061