清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generation of a Melanoma and Nevus Data Set From Unstandardized Clinical Photographs on the Internet

数据集 试验装置 卷积神经网络 人工智能 集合(抽象数据类型) 医学 判别式 计算机科学 互联网 模式识别(心理学) 黑色素瘤 机器学习 万维网 癌症研究 程序设计语言
作者
Soo Ick Cho,Cristián Navarrete‐Dechent,Roxana Daneshjou,Hye Soo Cho,Sung Eun Chang,Seong Hwan Kim,Jung Im Na,Seung Seog Han
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:159 (11): 1223-1223 被引量:3
标识
DOI:10.1001/jamadermatol.2023.3521
摘要

Importance Artificial intelligence (AI) training for diagnosing dermatologic images requires large amounts of clean data. Dermatologic images have different compositions, and many are inaccessible due to privacy concerns, which hinder the development of AI. Objective To build a training data set for discriminative and generative AI from unstandardized internet images of melanoma and nevus. Design, Setting, and Participants In this diagnostic study, a total of 5619 (CAN5600 data set) and 2006 (CAN2000 data set; a manually revised subset of CAN5600) cropped lesion images of either melanoma or nevus were semiautomatically annotated from approximately 500 000 photographs on the internet using convolutional neural networks (CNNs), region-based CNNs, and large mask inpainting. For unsupervised pretraining, 132 673 possible lesions (LESION130k data set) were also created with diversity by collecting images from 18 482 websites in approximately 80 countries. A total of 5000 synthetic images (GAN5000 data set) were generated using the generative adversarial network (StyleGAN2-ADA; training, CAN2000 data set; pretraining, LESION130k data set). Main Outcomes and Measures The area under the receiver operating characteristic curve (AUROC) for determining malignant neoplasms was analyzed. In each test, 1 of the 7 preexisting public data sets (total of 2312 images; including Edinburgh, an SNU subset, Asan test, Waterloo, 7-point criteria evaluation, PAD-UFES-20, and MED-NODE) was used as the test data set. Subsequently, a comparative study was conducted between the performance of the EfficientNet Lite0 CNN on the proposed data set and that trained on the remaining 6 preexisting data sets. Results The EfficientNet Lite0 CNN trained on the annotated or synthetic images achieved higher or equivalent mean (SD) AUROCs to the EfficientNet Lite0 trained using the pathologically confirmed public data sets, including CAN5600 (0.874 [0.042]; P = .02), CAN2000 (0.848 [0.027]; P = .08), and GAN5000 (0.838 [0.040]; P = .31 [Wilcoxon signed rank test]) and the preexisting data sets combined (0.809 [0.063]) by the benefits of increased size of the training data set. Conclusions and Relevance The synthetic data set in this diagnostic study was created using various AI technologies from internet images. A neural network trained on the created data set (CAN5600) performed better than the same network trained on preexisting data sets combined. Both the annotated (CAN5600 and LESION130k) and synthetic (GAN5000) data sets could be shared for AI training and consensus between physicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vbnn完成签到 ,获得积分10
刚刚
快乐元菱完成签到 ,获得积分10
18秒前
Eric800824完成签到 ,获得积分10
35秒前
平常山河完成签到 ,获得积分10
42秒前
aiyawy完成签到 ,获得积分10
1分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
研友_ZbP41L完成签到 ,获得积分10
2分钟前
2分钟前
fogsea完成签到,获得积分0
2分钟前
康2000发布了新的文献求助10
2分钟前
Yanice_Wan完成签到 ,获得积分10
2分钟前
周小浪完成签到,获得积分10
3分钟前
kenchilie完成签到 ,获得积分10
4分钟前
Somnus完成签到 ,获得积分10
4分钟前
雪花完成签到 ,获得积分10
4分钟前
ycw7777完成签到,获得积分10
4分钟前
宝儿姐完成签到 ,获得积分10
5分钟前
短巷完成签到 ,获得积分10
5分钟前
123完成签到 ,获得积分10
5分钟前
大水完成签到 ,获得积分10
6分钟前
小猴子完成签到 ,获得积分10
6分钟前
愉悦完成签到,获得积分10
6分钟前
怡然白竹完成签到 ,获得积分10
6分钟前
张医生完成签到,获得积分10
7分钟前
luffy189完成签到 ,获得积分10
7分钟前
juan完成签到 ,获得积分10
8分钟前
红茸茸羊完成签到 ,获得积分10
8分钟前
Linyi完成签到 ,获得积分10
8分钟前
CGFHEMAN完成签到 ,获得积分10
8分钟前
星光完成签到 ,获得积分10
8分钟前
meijuan1210完成签到 ,获得积分10
9分钟前
风秋杨完成签到 ,获得积分10
9分钟前
Raul完成签到 ,获得积分10
9分钟前
嘿嘿完成签到 ,获得积分10
9分钟前
YOLO完成签到 ,获得积分10
9分钟前
CipherSage应助alexlpb采纳,获得10
10分钟前
keyanzhang完成签到 ,获得积分0
10分钟前
安青兰完成签到 ,获得积分10
10分钟前
10分钟前
小海完成签到 ,获得积分10
10分钟前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158657
求助须知:如何正确求助?哪些是违规求助? 2809828
关于积分的说明 7883729
捐赠科研通 2468521
什么是DOI,文献DOI怎么找? 1314297
科研通“疑难数据库(出版商)”最低求助积分说明 630582
版权声明 601983