亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generation of a Melanoma and Nevus Data Set From Unstandardized Clinical Photographs on the Internet

数据集 试验装置 卷积神经网络 人工智能 集合(抽象数据类型) 医学 判别式 计算机科学 互联网 模式识别(心理学) 黑色素瘤 机器学习 万维网 癌症研究 程序设计语言
作者
Soo Ick Cho,Cristián Navarrete‐Dechent,Roxana Daneshjou,Hye Soo Cho,Sung Eun Chang,Seong Hwan Kim,Jung‐Im Na,Seung Seog Han
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:159 (11): 1223-1223 被引量:7
标识
DOI:10.1001/jamadermatol.2023.3521
摘要

Importance Artificial intelligence (AI) training for diagnosing dermatologic images requires large amounts of clean data. Dermatologic images have different compositions, and many are inaccessible due to privacy concerns, which hinder the development of AI. Objective To build a training data set for discriminative and generative AI from unstandardized internet images of melanoma and nevus. Design, Setting, and Participants In this diagnostic study, a total of 5619 (CAN5600 data set) and 2006 (CAN2000 data set; a manually revised subset of CAN5600) cropped lesion images of either melanoma or nevus were semiautomatically annotated from approximately 500 000 photographs on the internet using convolutional neural networks (CNNs), region-based CNNs, and large mask inpainting. For unsupervised pretraining, 132 673 possible lesions (LESION130k data set) were also created with diversity by collecting images from 18 482 websites in approximately 80 countries. A total of 5000 synthetic images (GAN5000 data set) were generated using the generative adversarial network (StyleGAN2-ADA; training, CAN2000 data set; pretraining, LESION130k data set). Main Outcomes and Measures The area under the receiver operating characteristic curve (AUROC) for determining malignant neoplasms was analyzed. In each test, 1 of the 7 preexisting public data sets (total of 2312 images; including Edinburgh, an SNU subset, Asan test, Waterloo, 7-point criteria evaluation, PAD-UFES-20, and MED-NODE) was used as the test data set. Subsequently, a comparative study was conducted between the performance of the EfficientNet Lite0 CNN on the proposed data set and that trained on the remaining 6 preexisting data sets. Results The EfficientNet Lite0 CNN trained on the annotated or synthetic images achieved higher or equivalent mean (SD) AUROCs to the EfficientNet Lite0 trained using the pathologically confirmed public data sets, including CAN5600 (0.874 [0.042]; P = .02), CAN2000 (0.848 [0.027]; P = .08), and GAN5000 (0.838 [0.040]; P = .31 [Wilcoxon signed rank test]) and the preexisting data sets combined (0.809 [0.063]) by the benefits of increased size of the training data set. Conclusions and Relevance The synthetic data set in this diagnostic study was created using various AI technologies from internet images. A neural network trained on the created data set (CAN5600) performed better than the same network trained on preexisting data sets combined. Both the annotated (CAN5600 and LESION130k) and synthetic (GAN5000) data sets could be shared for AI training and consensus between physicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangdong完成签到,获得积分10
2秒前
你好啊发布了新的文献求助10
4秒前
111发布了新的文献求助10
25秒前
34秒前
zhiwei完成签到 ,获得积分10
39秒前
58秒前
喜悦的小土豆完成签到 ,获得积分10
58秒前
111发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
111发布了新的文献求助10
1分钟前
1分钟前
morena发布了新的文献求助10
1分钟前
jyy发布了新的文献求助30
2分钟前
Elvira完成签到,获得积分10
2分钟前
2分钟前
2分钟前
111发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
sutharsons应助科研通管家采纳,获得100
3分钟前
烟花应助morena采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
科研通AI5应助shaco采纳,获得10
4分钟前
满意的藏今完成签到,获得积分20
4分钟前
斯文败类应助满意的藏今采纳,获得30
4分钟前
4分钟前
111发布了新的文献求助10
4分钟前
文艺猫咪完成签到,获得积分10
4分钟前
CodeCraft应助南南采纳,获得10
4分钟前
5分钟前
111发布了新的文献求助10
5分钟前
5分钟前
小二郎应助小菡菡采纳,获得10
5分钟前
morena发布了新的文献求助10
5分钟前
Orange应助咚咚锵采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
NexusExplorer应助科研通管家采纳,获得10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228107
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609913
邀请新用户注册赠送积分活动 760497
科研通“疑难数据库(出版商)”最低求助积分说明 735990