Modeling NO2 air pollution variation during and after COVID-19-regulation using principal component analysis of satellite imagery

主成分分析 环境科学 卫星 污染物 空气污染 污染 气象学 大气科学 统计 数学 地质学 地理 化学 工程类 生物 航空航天工程 有机化学 生态学
作者
Kamill Dániel Kovács,Ionel Haidu
出处
期刊:Environmental Pollution [Elsevier]
卷期号:342: 122973-122973 被引量:5
标识
DOI:10.1016/j.envpol.2023.122973
摘要

By implementing Principal Component Analysis (PCA) of multitemporal satellite data, this paper presents modeling solutions for air pollutant variation in three scenarios related to COVID-19 lockdown: pre, during, and after lockdown. Tropospheric NO2 satellite data from Sentinel-5P was used. Two novel PCA-models were developed: Weighted Principal Component Analysis (WPCA) and Rescaled Principal Component Analysis (RPCA). Model results were tested for goodness-of-fit to empirical NO2 data. The models were used to predict actual near-surface NO2 concentrations. Model-predicted NO2 concentrations were validated with NO2 data acquired at ground monitoring stations. Besides, meteorological bias affecting NO2 was assessed. It was found that the weather component had substantial impact on NO2 built-ups, propitiating air pollutant decrease during lockdown and increase after. WPCA and RPCA models well fitted to observed NO2. Both models accurately estimated near-surface NO2 concentrations. Modeled NO2 variation results evidenced the prolongated effect of the total lockdown (up to half a year). Model-predicted NO2 concentrations were found to highly correlate with monitoring station NO2 data collected on the ground. It is concluded that PCA is reliable in identifying and predicting air pollution variation patterns. The implementation of PCA is recommended when analyzing other pollutant gases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粥粥完成签到 ,获得积分10
1秒前
1秒前
爆米花应助daqisong采纳,获得10
1秒前
元2333发布了新的文献求助20
1秒前
1秒前
爆米花应助小椰采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
烟花应助vv采纳,获得10
2秒前
3秒前
3秒前
小蘑菇应助Gnor采纳,获得10
3秒前
星辰大海应助机灵的南蕾采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
qqxin完成签到,获得积分20
3秒前
3秒前
池寒1完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
xy完成签到 ,获得积分10
5秒前
AL发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
qqxin发布了新的文献求助10
6秒前
Ava应助why911采纳,获得10
7秒前
lhxing发布了新的文献求助20
7秒前
sule发布了新的文献求助10
8秒前
所所应助wenwen采纳,获得10
8秒前
万能图书馆应助王博雅采纳,获得10
8秒前
8秒前
李健应助lll采纳,获得10
9秒前
慕青应助Lilysound采纳,获得10
9秒前
青筠发布了新的文献求助10
10秒前
妩媚的夜柳完成签到 ,获得积分10
10秒前
赘婿应助白糖采纳,获得10
10秒前
无情的猎豹完成签到 ,获得积分10
10秒前
10秒前
为什么完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932