Modeling NO2 air pollution variation during and after COVID-19-regulation using principal component analysis of satellite imagery

主成分分析 环境科学 卫星 污染物 空气污染 污染 气象学 大气科学 统计 数学 地质学 地理 化学 工程类 生物 航空航天工程 有机化学 生态学
作者
Kamill Dániel Kovács,Ionel Haidu
出处
期刊:Environmental Pollution [Elsevier BV]
卷期号:342: 122973-122973 被引量:5
标识
DOI:10.1016/j.envpol.2023.122973
摘要

By implementing Principal Component Analysis (PCA) of multitemporal satellite data, this paper presents modeling solutions for air pollutant variation in three scenarios related to COVID-19 lockdown: pre, during, and after lockdown. Tropospheric NO2 satellite data from Sentinel-5P was used. Two novel PCA-models were developed: Weighted Principal Component Analysis (WPCA) and Rescaled Principal Component Analysis (RPCA). Model results were tested for goodness-of-fit to empirical NO2 data. The models were used to predict actual near-surface NO2 concentrations. Model-predicted NO2 concentrations were validated with NO2 data acquired at ground monitoring stations. Besides, meteorological bias affecting NO2 was assessed. It was found that the weather component had substantial impact on NO2 built-ups, propitiating air pollutant decrease during lockdown and increase after. WPCA and RPCA models well fitted to observed NO2. Both models accurately estimated near-surface NO2 concentrations. Modeled NO2 variation results evidenced the prolongated effect of the total lockdown (up to half a year). Model-predicted NO2 concentrations were found to highly correlate with monitoring station NO2 data collected on the ground. It is concluded that PCA is reliable in identifying and predicting air pollution variation patterns. The implementation of PCA is recommended when analyzing other pollutant gases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张吃不胖完成签到 ,获得积分10
1秒前
不安的翠容完成签到,获得积分10
3秒前
阔达凝天完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
风趣遥完成签到,获得积分10
4秒前
77发布了新的文献求助10
4秒前
华仔应助柔弱雅彤采纳,获得10
5秒前
烟花应助柔弱雅彤采纳,获得10
5秒前
DMTloveforever完成签到,获得积分10
5秒前
陶醉的冷梅完成签到,获得积分10
7秒前
22222发布了新的文献求助20
7秒前
btyjs完成签到,获得积分10
7秒前
哈哈发布了新的文献求助10
8秒前
科研通AI6应助草学研究采纳,获得10
9秒前
Ran发布了新的文献求助10
10秒前
鲁万仇发布了新的文献求助10
10秒前
WYW发布了新的文献求助10
12秒前
13秒前
JamesPei应助苗条的一兰采纳,获得20
14秒前
研友_VZG7GZ应助林鑫璐采纳,获得10
15秒前
Tokgo完成签到,获得积分10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
Jasper应助singlelx89采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
17秒前
17秒前
Orange应助科研通管家采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得30
17秒前
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226663
求助须知:如何正确求助?哪些是违规求助? 4398072
关于积分的说明 13688295
捐赠科研通 4262686
什么是DOI,文献DOI怎么找? 2339276
邀请新用户注册赠送积分活动 1336647
关于科研通互助平台的介绍 1292640