Modeling NO2 air pollution variation during and after COVID-19-regulation using principal component analysis of satellite imagery

主成分分析 环境科学 卫星 污染物 空气污染 污染 气象学 大气科学 统计 数学 地质学 地理 化学 工程类 生物 航空航天工程 有机化学 生态学
作者
Kamill Dániel Kovács,Ionel Haidu
出处
期刊:Environmental Pollution [Elsevier]
卷期号:342: 122973-122973 被引量:5
标识
DOI:10.1016/j.envpol.2023.122973
摘要

By implementing Principal Component Analysis (PCA) of multitemporal satellite data, this paper presents modeling solutions for air pollutant variation in three scenarios related to COVID-19 lockdown: pre, during, and after lockdown. Tropospheric NO2 satellite data from Sentinel-5P was used. Two novel PCA-models were developed: Weighted Principal Component Analysis (WPCA) and Rescaled Principal Component Analysis (RPCA). Model results were tested for goodness-of-fit to empirical NO2 data. The models were used to predict actual near-surface NO2 concentrations. Model-predicted NO2 concentrations were validated with NO2 data acquired at ground monitoring stations. Besides, meteorological bias affecting NO2 was assessed. It was found that the weather component had substantial impact on NO2 built-ups, propitiating air pollutant decrease during lockdown and increase after. WPCA and RPCA models well fitted to observed NO2. Both models accurately estimated near-surface NO2 concentrations. Modeled NO2 variation results evidenced the prolongated effect of the total lockdown (up to half a year). Model-predicted NO2 concentrations were found to highly correlate with monitoring station NO2 data collected on the ground. It is concluded that PCA is reliable in identifying and predicting air pollution variation patterns. The implementation of PCA is recommended when analyzing other pollutant gases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
解青文发布了新的文献求助10
2秒前
爆米花应助港岛妹妹采纳,获得30
2秒前
闪闪龙猫应助ray采纳,获得10
5秒前
脑洞疼应助加油采纳,获得10
6秒前
爱静静应助开放又亦采纳,获得10
8秒前
zhaoqiang关注了科研通微信公众号
9秒前
喵茸茸完成签到,获得积分10
11秒前
科研通AI2S应助安详以晴采纳,获得10
13秒前
小二郎应助安详以晴采纳,获得10
13秒前
13秒前
Ashan发布了新的文献求助10
14秒前
zzz236完成签到 ,获得积分10
14秒前
14秒前
慕青应助峰1992采纳,获得30
16秒前
qq完成签到,获得积分20
16秒前
港岛妹妹发布了新的文献求助30
18秒前
20秒前
shiyousheng发布了新的文献求助10
25秒前
27秒前
zyq完成签到,获得积分10
28秒前
美好的忆霜完成签到,获得积分20
30秒前
tyy应助解青文采纳,获得10
30秒前
33秒前
35秒前
35秒前
LeeY.发布了新的文献求助10
38秒前
LAFF完成签到,获得积分10
38秒前
加油发布了新的文献求助10
40秒前
七里香发布了新的文献求助10
42秒前
46秒前
46秒前
46秒前
47秒前
50秒前
婧哥哥发布了新的文献求助10
51秒前
thirteen发布了新的文献求助10
51秒前
共享精神应助LeeY.采纳,获得10
52秒前
阿凯完成签到 ,获得积分10
54秒前
57秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314052
求助须知:如何正确求助?哪些是违规求助? 2946471
关于积分的说明 8530176
捐赠科研通 2622111
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650804