Dual-mode sensor for intelligent solution monitoring: Enhancing sensitivity and recognition accuracy through capacitive and triboelectric sensing

摩擦电效应 电容感应 材料科学 电容 灵敏度(控制系统) 双模 光电子学 电子皮肤 电介质 电极 电气工程 电子工程 工程类 化学 物理化学 复合材料
作者
Jian Yu,Jiafeng Tang,Long Wang,Yanjie Guo,Wenyao Ma,Lei Yang,Shiyin Chen
出处
期刊:Nano Energy [Elsevier BV]
卷期号:118: 109009-109009 被引量:6
标识
DOI:10.1016/j.nanoen.2023.109009
摘要

Monitoring solution parameters is of utmost importance in various industries and daily applications. However, the challenge lies in using a single sensor to effectively monitor different parameters in the solution. In this study, a dual-mode sensor is proposed, capable of monitoring multiple solution parameters combined with deep learning method. The fabrication process of the dual-mode sensor is simple, involving a substrate, interdigital electrodes, and a dielectric layer. The sensitivity of the dual-mode sensor is improved by increasing the dielectric constant of the dielectric layer and optimizing the design of the interdigital electrodes. Under the capacitive sensing mode, the sensor effectively identifies solution type by detecting capacitance changes due to the conductivity of the mixed solution. Under the triboelectric sensing mode, the sensor exhibits high sensitivity to solution concentration through the coupling of the capacitive enhancement effect and the triboelectric effect. An electric switch is incorporated into the design to control the signal acquisition of the dual-mode sensor. By combining the deep learning method with the dual-mode sensor, high recognition accuracies have been achieved for both solution type and concentration, with average accuracies exceeding 95%. Furthermore, the dual-mode sensor is not limited to monitoring liquid droplets; it can also be used for monitoring the types of liquids in bottles. In addition, an intelligent system is developed to visualize the intelligent monitoring process. This work not only contributes to a better understanding of the underlying mechanisms of planar capacitive sensors (PCS) and free-standing triboelectric nanogenerators (FS-TENG), but also presents a promising method for intelligent solution monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
高兴擎苍发布了新的文献求助10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
眼睛大半烟完成签到,获得积分10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得30
1秒前
情怀应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
2秒前
情怀应助懵懂的枫叶采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
一颗糖完成签到 ,获得积分10
2秒前
Jasper应助客厅狂欢采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
打打应助无3采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
Ben完成签到,获得积分10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
丘比特应助自由朋友采纳,获得30
2秒前
Orange应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
长安完成签到,获得积分10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得30
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
JW完成签到,获得积分10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097923
求助须知:如何正确求助?哪些是违规求助? 4310320
关于积分的说明 13429925
捐赠科研通 4137692
什么是DOI,文献DOI怎么找? 2266852
邀请新用户注册赠送积分活动 1269966
关于科研通互助平台的介绍 1206237