Dual-mode sensor for intelligent solution monitoring: Enhancing sensitivity and recognition accuracy through capacitive and triboelectric sensing

摩擦电效应 电容感应 材料科学 电容 灵敏度(控制系统) 双模 光电子学 电子皮肤 电介质 电极 电气工程 电子工程 工程类 化学 物理化学 复合材料
作者
Jian Yu,Jiafeng Tang,Long Wang,Yanjie Guo,Wenyao Ma,Lei Yang,Shiyin Chen
出处
期刊:Nano Energy [Elsevier BV]
卷期号:118: 109009-109009 被引量:6
标识
DOI:10.1016/j.nanoen.2023.109009
摘要

Monitoring solution parameters is of utmost importance in various industries and daily applications. However, the challenge lies in using a single sensor to effectively monitor different parameters in the solution. In this study, a dual-mode sensor is proposed, capable of monitoring multiple solution parameters combined with deep learning method. The fabrication process of the dual-mode sensor is simple, involving a substrate, interdigital electrodes, and a dielectric layer. The sensitivity of the dual-mode sensor is improved by increasing the dielectric constant of the dielectric layer and optimizing the design of the interdigital electrodes. Under the capacitive sensing mode, the sensor effectively identifies solution type by detecting capacitance changes due to the conductivity of the mixed solution. Under the triboelectric sensing mode, the sensor exhibits high sensitivity to solution concentration through the coupling of the capacitive enhancement effect and the triboelectric effect. An electric switch is incorporated into the design to control the signal acquisition of the dual-mode sensor. By combining the deep learning method with the dual-mode sensor, high recognition accuracies have been achieved for both solution type and concentration, with average accuracies exceeding 95%. Furthermore, the dual-mode sensor is not limited to monitoring liquid droplets; it can also be used for monitoring the types of liquids in bottles. In addition, an intelligent system is developed to visualize the intelligent monitoring process. This work not only contributes to a better understanding of the underlying mechanisms of planar capacitive sensors (PCS) and free-standing triboelectric nanogenerators (FS-TENG), but also presents a promising method for intelligent solution monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小李发布了新的文献求助10
刚刚
刚刚
眼中星光发布了新的文献求助10
1秒前
1秒前
2秒前
强仔完成签到,获得积分10
2秒前
DDDD发布了新的文献求助10
3秒前
3秒前
喜欢慧慧宝完成签到,获得积分10
3秒前
3秒前
Famiglistmo完成签到,获得积分10
4秒前
4秒前
王吉吉发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
现代访梦完成签到 ,获得积分10
5秒前
AHSA156386发布了新的文献求助10
6秒前
Stephen完成签到,获得积分10
6秒前
研友_LavApn发布了新的文献求助10
7秒前
双硫仑完成签到,获得积分10
7秒前
7秒前
astiria完成签到,获得积分10
7秒前
小李完成签到,获得积分20
8秒前
8秒前
乐乐应助周宁安采纳,获得10
8秒前
8秒前
9秒前
香蕉觅云应助jun1357采纳,获得10
9秒前
my发布了新的文献求助10
9秒前
落寞的路灯应助姜露萍采纳,获得10
9秒前
10秒前
QY完成签到,获得积分10
10秒前
Shi完成签到,获得积分10
11秒前
月白发布了新的文献求助10
11秒前
自由元冬应助kmy采纳,获得10
12秒前
echo发布了新的文献求助10
12秒前
12秒前
小航爱学习完成签到,获得积分20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Refractory Castable Engineering 400
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5181196
求助须知:如何正确求助?哪些是违规求助? 4368303
关于积分的说明 13602302
捐赠科研通 4219276
什么是DOI,文献DOI怎么找? 2314014
邀请新用户注册赠送积分活动 1312748
关于科研通互助平台的介绍 1261388