Dual-mode sensor for intelligent solution monitoring: Enhancing sensitivity and recognition accuracy through capacitive and triboelectric sensing

摩擦电效应 电容感应 材料科学 电容 灵敏度(控制系统) 双模 光电子学 电子皮肤 电介质 电极 电气工程 电子工程 工程类 化学 物理化学 复合材料
作者
Jian Yu,Jiafeng Tang,Long Wang,Yanjie Guo,Wenyao Ma,Lei Yang,Shiyin Chen
出处
期刊:Nano Energy [Elsevier BV]
卷期号:118: 109009-109009 被引量:6
标识
DOI:10.1016/j.nanoen.2023.109009
摘要

Monitoring solution parameters is of utmost importance in various industries and daily applications. However, the challenge lies in using a single sensor to effectively monitor different parameters in the solution. In this study, a dual-mode sensor is proposed, capable of monitoring multiple solution parameters combined with deep learning method. The fabrication process of the dual-mode sensor is simple, involving a substrate, interdigital electrodes, and a dielectric layer. The sensitivity of the dual-mode sensor is improved by increasing the dielectric constant of the dielectric layer and optimizing the design of the interdigital electrodes. Under the capacitive sensing mode, the sensor effectively identifies solution type by detecting capacitance changes due to the conductivity of the mixed solution. Under the triboelectric sensing mode, the sensor exhibits high sensitivity to solution concentration through the coupling of the capacitive enhancement effect and the triboelectric effect. An electric switch is incorporated into the design to control the signal acquisition of the dual-mode sensor. By combining the deep learning method with the dual-mode sensor, high recognition accuracies have been achieved for both solution type and concentration, with average accuracies exceeding 95%. Furthermore, the dual-mode sensor is not limited to monitoring liquid droplets; it can also be used for monitoring the types of liquids in bottles. In addition, an intelligent system is developed to visualize the intelligent monitoring process. This work not only contributes to a better understanding of the underlying mechanisms of planar capacitive sensors (PCS) and free-standing triboelectric nanogenerators (FS-TENG), but also presents a promising method for intelligent solution monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANmin发布了新的文献求助10
1秒前
从容的盼晴完成签到,获得积分10
2秒前
3秒前
碑刻完成签到,获得积分10
4秒前
逆蝶发布了新的文献求助10
4秒前
干净博涛完成签到 ,获得积分10
5秒前
田様应助xiangxiang123采纳,获得10
5秒前
陈文娟完成签到,获得积分10
6秒前
苍露完成签到 ,获得积分10
9秒前
Wendy完成签到,获得积分10
12秒前
14秒前
派先生完成签到,获得积分10
15秒前
16秒前
16秒前
wen关闭了wen文献求助
17秒前
18秒前
可爱的函函应助多久上课采纳,获得10
18秒前
夜夜发布了新的文献求助10
18秒前
yunyueqixun完成签到,获得积分10
19秒前
21秒前
佳佳发布了新的文献求助10
22秒前
23秒前
丘比特应助来日方长采纳,获得10
23秒前
24秒前
24秒前
24秒前
可爱的函函应助张建采纳,获得10
24秒前
24秒前
tt发布了新的文献求助10
25秒前
闵凝竹完成签到 ,获得积分0
25秒前
yunyueqixun发布了新的文献求助10
26秒前
雷培完成签到,获得积分20
26秒前
LJL发布了新的文献求助10
27秒前
27秒前
善学以致用应助夜夜采纳,获得10
28秒前
顾矜应助多情的初蓝采纳,获得10
29秒前
a553355完成签到,获得积分10
29秒前
爆米花应助健壮的夕阳采纳,获得10
32秒前
ill关注了科研通微信公众号
32秒前
36秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997731
求助须知:如何正确求助?哪些是违规求助? 3537261
关于积分的说明 11271137
捐赠科研通 3276409
什么是DOI,文献DOI怎么找? 1806986
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982