Dual-mode sensor for intelligent solution monitoring: Enhancing sensitivity and recognition accuracy through capacitive and triboelectric sensing

摩擦电效应 电容感应 材料科学 电容 灵敏度(控制系统) 双模 光电子学 电子皮肤 电介质 电极 电气工程 电子工程 工程类 化学 物理化学 复合材料
作者
Jian Yu,Jiafeng Tang,Long Wang,Yanjie Guo,Wenyao Ma,Lei Yang,Shiyin Chen
出处
期刊:Nano Energy [Elsevier]
卷期号:118: 109009-109009 被引量:6
标识
DOI:10.1016/j.nanoen.2023.109009
摘要

Monitoring solution parameters is of utmost importance in various industries and daily applications. However, the challenge lies in using a single sensor to effectively monitor different parameters in the solution. In this study, a dual-mode sensor is proposed, capable of monitoring multiple solution parameters combined with deep learning method. The fabrication process of the dual-mode sensor is simple, involving a substrate, interdigital electrodes, and a dielectric layer. The sensitivity of the dual-mode sensor is improved by increasing the dielectric constant of the dielectric layer and optimizing the design of the interdigital electrodes. Under the capacitive sensing mode, the sensor effectively identifies solution type by detecting capacitance changes due to the conductivity of the mixed solution. Under the triboelectric sensing mode, the sensor exhibits high sensitivity to solution concentration through the coupling of the capacitive enhancement effect and the triboelectric effect. An electric switch is incorporated into the design to control the signal acquisition of the dual-mode sensor. By combining the deep learning method with the dual-mode sensor, high recognition accuracies have been achieved for both solution type and concentration, with average accuracies exceeding 95%. Furthermore, the dual-mode sensor is not limited to monitoring liquid droplets; it can also be used for monitoring the types of liquids in bottles. In addition, an intelligent system is developed to visualize the intelligent monitoring process. This work not only contributes to a better understanding of the underlying mechanisms of planar capacitive sensors (PCS) and free-standing triboelectric nanogenerators (FS-TENG), but also presents a promising method for intelligent solution monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
麦迪努尔完成签到,获得积分10
刚刚
1秒前
ZheyuYao完成签到,获得积分10
1秒前
研友_LjDyNZ完成签到,获得积分10
1秒前
酷波zai完成签到,获得积分10
1秒前
素的素的完成签到,获得积分10
2秒前
2秒前
Able阿拉基完成签到,获得积分10
2秒前
2秒前
清秀的初翠完成签到,获得积分10
2秒前
无花果应助善恶成采纳,获得10
2秒前
3秒前
ding应助Sunshine采纳,获得10
3秒前
mawanyu发布了新的文献求助10
3秒前
4秒前
echo完成签到,获得积分10
4秒前
风中冰香举报anlikek求助涉嫌违规
4秒前
上官若男应助我爱科研采纳,获得10
4秒前
Agrale完成签到,获得积分10
5秒前
ZQ完成签到,获得积分10
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
大个应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
lcj应助科研通管家采纳,获得20
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
亦玉发布了新的文献求助10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
嘻嘻哈哈应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
蓓蓓发布了新的文献求助10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
6秒前
doudou应助娃哈哈采纳,获得20
6秒前
just发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5316908
求助须知:如何正确求助?哪些是违规求助? 4459356
关于积分的说明 13874913
捐赠科研通 4349318
什么是DOI,文献DOI怎么找? 2388758
邀请新用户注册赠送积分活动 1382917
关于科研通互助平台的介绍 1352277