Dual-mode sensor for intelligent solution monitoring: Enhancing sensitivity and recognition accuracy through capacitive and triboelectric sensing

摩擦电效应 电容感应 材料科学 电容 灵敏度(控制系统) 双模 光电子学 电子皮肤 电介质 电极 电气工程 电子工程 工程类 化学 物理化学 复合材料
作者
Jian Yu,Jiafeng Tang,Long Wang,Yanjie Guo,Wenyao Ma,Lei Yang,Shiyin Chen
出处
期刊:Nano Energy [Elsevier BV]
卷期号:118: 109009-109009 被引量:6
标识
DOI:10.1016/j.nanoen.2023.109009
摘要

Monitoring solution parameters is of utmost importance in various industries and daily applications. However, the challenge lies in using a single sensor to effectively monitor different parameters in the solution. In this study, a dual-mode sensor is proposed, capable of monitoring multiple solution parameters combined with deep learning method. The fabrication process of the dual-mode sensor is simple, involving a substrate, interdigital electrodes, and a dielectric layer. The sensitivity of the dual-mode sensor is improved by increasing the dielectric constant of the dielectric layer and optimizing the design of the interdigital electrodes. Under the capacitive sensing mode, the sensor effectively identifies solution type by detecting capacitance changes due to the conductivity of the mixed solution. Under the triboelectric sensing mode, the sensor exhibits high sensitivity to solution concentration through the coupling of the capacitive enhancement effect and the triboelectric effect. An electric switch is incorporated into the design to control the signal acquisition of the dual-mode sensor. By combining the deep learning method with the dual-mode sensor, high recognition accuracies have been achieved for both solution type and concentration, with average accuracies exceeding 95%. Furthermore, the dual-mode sensor is not limited to monitoring liquid droplets; it can also be used for monitoring the types of liquids in bottles. In addition, an intelligent system is developed to visualize the intelligent monitoring process. This work not only contributes to a better understanding of the underlying mechanisms of planar capacitive sensors (PCS) and free-standing triboelectric nanogenerators (FS-TENG), but also presents a promising method for intelligent solution monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助周南采纳,获得10
1秒前
jhcraul发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
李健的粉丝团团长应助Elma采纳,获得10
4秒前
xxfsx举报开放香岚求助涉嫌违规
4秒前
lalala应助Wanfeng采纳,获得10
4秒前
5秒前
6秒前
7秒前
kytm完成签到,获得积分10
7秒前
7秒前
夜雨林凉发布了新的文献求助10
7秒前
7秒前
yfh1997发布了新的文献求助10
8秒前
科研通AI6应助开朗孤兰采纳,获得10
8秒前
MOLLY发布了新的文献求助10
9秒前
少艾发布了新的文献求助10
9秒前
li完成签到,获得积分10
10秒前
不倦应助雪山飞龙采纳,获得10
11秒前
胡民伟发布了新的文献求助10
11秒前
干净的厉完成签到,获得积分10
11秒前
xiaoju完成签到,获得积分20
12秒前
winnie完成签到,获得积分10
12秒前
Jasper应助耳冉采纳,获得10
15秒前
bkagyin应助西北采纳,获得10
16秒前
17秒前
17秒前
传奇3应助夜雨林凉采纳,获得10
17秒前
胡民伟完成签到,获得积分20
18秒前
奇奇怪怪完成签到,获得积分10
18秒前
YJY完成签到 ,获得积分10
18秒前
18秒前
冬月既止始完成签到,获得积分10
19秒前
松果发布了新的文献求助50
19秒前
王哈哈发布了新的文献求助10
20秒前
xiaoju发布了新的文献求助10
21秒前
lilijob发布了新的文献求助10
22秒前
李爱国应助能干的烧鹅采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5263289
求助须知:如何正确求助?哪些是违规求助? 4423914
关于积分的说明 13771219
捐赠科研通 4298936
什么是DOI,文献DOI怎么找? 2358826
邀请新用户注册赠送积分活动 1355088
关于科研通互助平台的介绍 1316312