g-BERT: Enabling Green BERT Deployment on FPGA via Hardware-Aware Hybrid Pruning

计算机科学 现场可编程门阵列 失败 修剪 延迟(音频) 嵌入式系统 推论 硬件体系结构 计算机硬件 并行计算 计算机工程 人工智能 软件 操作系统 电信 农学 生物
作者
Yu Bai,Hao Zhou,Ruiqi Chen,Kaili Zou,Jialin Cao,Haoyang Zhang,Jianli Chen,Jinhua Yu,Kun Wang
标识
DOI:10.1109/icc45041.2023.10278567
摘要

Transformer-based models suffer from large num-ber of parameters and high inference latency, whose deployment are not green due to the potential environmental damage caused by high inference energy consumption. In addition, it is difficult to deploy such models on devices, especially on resource constrained devices such as FPGA. Various model pruning methods are proposed to shrink the model size and resource consumption, so as to fit the models on hardware. However, such methods often introduce floating point of operations (FLOPs) as an agent of hardware performance, which is not accurate. Furthermore, structural pruning methods are always in a single head-wise or layer-wise pattern, which fails to compress the models to the extreme. To resolve the above issues, we propose a green BERT deployment method on FPGA via hardware-aware and hybrid pruning, named g-BERT. Specifically, two hardware-aware metrics are introduced by High Level Synthesis (HLS) to evaluate the latency and power consumption of inference on FPGA, which can be optimized directly while pruning. Moreover, we simultaneously consider pruning of heads and full encoder layers. To efficiently find the optimal structure, g-BERT applies differentiable neural architecture search (NAS) with a special 0–1 loss function. Compared with the BERT-base, g-BERT achieves $2.1\times$ speedup, $1.9\times$ power consumption reduction and $1.8\times$ model size reduction with comparable accuracy, on par with the state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZBY完成签到,获得积分10
刚刚
科研啊科研完成签到,获得积分10
刚刚
闪闪的斑马完成签到,获得积分10
刚刚
龙在天涯完成签到,获得积分0
1秒前
哈哈完成签到,获得积分10
1秒前
2秒前
坚强的飞凤完成签到,获得积分10
2秒前
jixiekaifa完成签到 ,获得积分10
2秒前
hwl26完成签到,获得积分10
3秒前
zzx完成签到,获得积分10
3秒前
zjz1应助fdpb采纳,获得10
3秒前
海虎爆破拳完成签到,获得积分10
3秒前
西柚西柚完成签到 ,获得积分10
3秒前
tiptip应助木木三采纳,获得10
3秒前
HK完成签到,获得积分10
4秒前
4秒前
Ammon完成签到,获得积分10
4秒前
缥缈树叶完成签到,获得积分10
4秒前
纪云海完成签到,获得积分10
6秒前
happyboy2008完成签到,获得积分10
6秒前
科研通AI6应助min采纳,获得10
6秒前
anastasia完成签到,获得积分10
6秒前
徐慕源完成签到,获得积分10
6秒前
一直成长完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
一米八发布了新的文献求助10
7秒前
小赵发布了新的文献求助10
7秒前
LS完成签到,获得积分10
7秒前
7秒前
8秒前
灵活的胖子wxp完成签到,获得积分10
8秒前
jane完成签到,获得积分10
8秒前
asdfzxcv应助缥缈树叶采纳,获得10
8秒前
hohokuz完成签到,获得积分10
8秒前
9秒前
wuqilong完成签到,获得积分10
10秒前
xjh完成签到,获得积分10
10秒前
ranlan完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651671
求助须知:如何正确求助?哪些是违规求助? 4785545
关于积分的说明 15054930
捐赠科研通 4810310
什么是DOI,文献DOI怎么找? 2573067
邀请新用户注册赠送积分活动 1528952
关于科研通互助平台的介绍 1487935