g-BERT: Enabling Green BERT Deployment on FPGA via Hardware-Aware Hybrid Pruning

计算机科学 现场可编程门阵列 失败 修剪 延迟(音频) 嵌入式系统 推论 硬件体系结构 计算机硬件 并行计算 计算机工程 人工智能 软件 操作系统 电信 农学 生物
作者
Yu Bai,Hao Zhou,Ruiqi Chen,Kaili Zou,Jialin Cao,Haoyang Zhang,Jianli Chen,Jinhua Yu,Kun Wang
标识
DOI:10.1109/icc45041.2023.10278567
摘要

Transformer-based models suffer from large num-ber of parameters and high inference latency, whose deployment are not green due to the potential environmental damage caused by high inference energy consumption. In addition, it is difficult to deploy such models on devices, especially on resource constrained devices such as FPGA. Various model pruning methods are proposed to shrink the model size and resource consumption, so as to fit the models on hardware. However, such methods often introduce floating point of operations (FLOPs) as an agent of hardware performance, which is not accurate. Furthermore, structural pruning methods are always in a single head-wise or layer-wise pattern, which fails to compress the models to the extreme. To resolve the above issues, we propose a green BERT deployment method on FPGA via hardware-aware and hybrid pruning, named g-BERT. Specifically, two hardware-aware metrics are introduced by High Level Synthesis (HLS) to evaluate the latency and power consumption of inference on FPGA, which can be optimized directly while pruning. Moreover, we simultaneously consider pruning of heads and full encoder layers. To efficiently find the optimal structure, g-BERT applies differentiable neural architecture search (NAS) with a special 0–1 loss function. Compared with the BERT-base, g-BERT achieves $2.1\times$ speedup, $1.9\times$ power consumption reduction and $1.8\times$ model size reduction with comparable accuracy, on par with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
松鼠15111发布了新的文献求助30
1秒前
浮生若梦发布了新的文献求助30
1秒前
hiahiayue发布了新的文献求助10
1秒前
无奈安双完成签到,获得积分10
2秒前
Hello应助ddddd采纳,获得10
2秒前
2秒前
2秒前
ZXH完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
Lxxixixi发布了新的文献求助10
3秒前
4秒前
yu完成签到,获得积分10
4秒前
小松松完成签到,获得积分10
5秒前
5秒前
lzw123456完成签到,获得积分10
5秒前
liuhang完成签到,获得积分10
5秒前
5秒前
今天也要努力呀完成签到,获得积分10
5秒前
5秒前
lalahh发布了新的文献求助10
6秒前
6秒前
ccc发布了新的文献求助10
6秒前
嗖嗖完成签到,获得积分10
6秒前
7秒前
所所应助xu采纳,获得30
7秒前
8秒前
rabbit发布了新的文献求助10
8秒前
山复尔尔发布了新的文献求助10
8秒前
mumu发布了新的文献求助10
9秒前
9秒前
迷人如冬发布了新的文献求助10
10秒前
Lxxixixi完成签到,获得积分10
10秒前
10秒前
13455完成签到,获得积分10
10秒前
Zym张迎濛完成签到 ,获得积分10
10秒前
或无情完成签到 ,获得积分10
11秒前
123关闭了123文献求助
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598