g-BERT: Enabling Green BERT Deployment on FPGA via Hardware-Aware Hybrid Pruning

计算机科学 现场可编程门阵列 失败 修剪 延迟(音频) 嵌入式系统 推论 硬件体系结构 计算机硬件 并行计算 计算机工程 人工智能 软件 操作系统 电信 农学 生物
作者
Yu Bai,Hao Zhou,Ruiqi Chen,Kaili Zou,Jialin Cao,Haoyang Zhang,Jianli Chen,Jinhua Yu,Kun Wang
标识
DOI:10.1109/icc45041.2023.10278567
摘要

Transformer-based models suffer from large num-ber of parameters and high inference latency, whose deployment are not green due to the potential environmental damage caused by high inference energy consumption. In addition, it is difficult to deploy such models on devices, especially on resource constrained devices such as FPGA. Various model pruning methods are proposed to shrink the model size and resource consumption, so as to fit the models on hardware. However, such methods often introduce floating point of operations (FLOPs) as an agent of hardware performance, which is not accurate. Furthermore, structural pruning methods are always in a single head-wise or layer-wise pattern, which fails to compress the models to the extreme. To resolve the above issues, we propose a green BERT deployment method on FPGA via hardware-aware and hybrid pruning, named g-BERT. Specifically, two hardware-aware metrics are introduced by High Level Synthesis (HLS) to evaluate the latency and power consumption of inference on FPGA, which can be optimized directly while pruning. Moreover, we simultaneously consider pruning of heads and full encoder layers. To efficiently find the optimal structure, g-BERT applies differentiable neural architecture search (NAS) with a special 0–1 loss function. Compared with the BERT-base, g-BERT achieves $2.1\times$ speedup, $1.9\times$ power consumption reduction and $1.8\times$ model size reduction with comparable accuracy, on par with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
计时器响了完成签到,获得积分10
刚刚
郑嵩完成签到,获得积分10
刚刚
1wcx2发布了新的文献求助10
刚刚
1秒前
大模型应助mm采纳,获得10
2秒前
3秒前
3秒前
小星星完成签到 ,获得积分10
5秒前
dinglingling关注了科研通微信公众号
5秒前
科研圣体完成签到 ,获得积分10
5秒前
毛豆应助xxx采纳,获得10
5秒前
季心安发布了新的文献求助10
6秒前
深情安青应助蟹黄包包采纳,获得10
6秒前
眼睛大的耷完成签到,获得积分10
6秒前
浅尝离白完成签到,获得积分0
7秒前
8秒前
guo发布了新的文献求助10
8秒前
千亦完成签到,获得积分10
8秒前
9秒前
9秒前
冷静冰双完成签到,获得积分20
9秒前
10秒前
今后应助wyr采纳,获得10
10秒前
katrina完成签到 ,获得积分10
11秒前
11秒前
nini完成签到,获得积分10
12秒前
英俊的铭应助yqzl采纳,获得10
13秒前
达落完成签到,获得积分10
13秒前
13秒前
明理听安完成签到,获得积分10
15秒前
叶子小丙发布了新的文献求助10
15秒前
16秒前
冷静的千山完成签到,获得积分10
16秒前
huang完成签到,获得积分20
17秒前
long完成签到 ,获得积分10
19秒前
iperper完成签到,获得积分10
19秒前
健忘书兰完成签到,获得积分10
20秒前
20秒前
toto完成签到 ,获得积分10
20秒前
李健的粉丝团团长应助kk采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308852
求助须知:如何正确求助?哪些是违规求助? 2942301
关于积分的说明 8507956
捐赠科研通 2617252
什么是DOI,文献DOI怎么找? 1430026
科研通“疑难数据库(出版商)”最低求助积分说明 663984
邀请新用户注册赠送积分活动 649215