g-BERT: Enabling Green BERT Deployment on FPGA via Hardware-Aware Hybrid Pruning

计算机科学 现场可编程门阵列 失败 修剪 延迟(音频) 嵌入式系统 推论 硬件体系结构 计算机硬件 并行计算 计算机工程 人工智能 软件 操作系统 电信 农学 生物
作者
Yu Bai,Hao Zhou,Ruiqi Chen,Kaili Zou,Jialin Cao,Haoyang Zhang,Jianli Chen,Jinhua Yu,Kun Wang
标识
DOI:10.1109/icc45041.2023.10278567
摘要

Transformer-based models suffer from large num-ber of parameters and high inference latency, whose deployment are not green due to the potential environmental damage caused by high inference energy consumption. In addition, it is difficult to deploy such models on devices, especially on resource constrained devices such as FPGA. Various model pruning methods are proposed to shrink the model size and resource consumption, so as to fit the models on hardware. However, such methods often introduce floating point of operations (FLOPs) as an agent of hardware performance, which is not accurate. Furthermore, structural pruning methods are always in a single head-wise or layer-wise pattern, which fails to compress the models to the extreme. To resolve the above issues, we propose a green BERT deployment method on FPGA via hardware-aware and hybrid pruning, named g-BERT. Specifically, two hardware-aware metrics are introduced by High Level Synthesis (HLS) to evaluate the latency and power consumption of inference on FPGA, which can be optimized directly while pruning. Moreover, we simultaneously consider pruning of heads and full encoder layers. To efficiently find the optimal structure, g-BERT applies differentiable neural architecture search (NAS) with a special 0–1 loss function. Compared with the BERT-base, g-BERT achieves $2.1\times$ speedup, $1.9\times$ power consumption reduction and $1.8\times$ model size reduction with comparable accuracy, on par with the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助hututu采纳,获得30
1秒前
4秒前
jinjin发布了新的文献求助10
4秒前
123456发布了新的文献求助10
5秒前
5秒前
San万发布了新的文献求助10
5秒前
7秒前
9秒前
9秒前
stt1011完成签到,获得积分10
9秒前
上官若男应助豆沙包采纳,获得10
9秒前
Akim应助自由的风采纳,获得10
9秒前
张晓昊发布了新的文献求助10
10秒前
赛赛完成签到 ,获得积分10
11秒前
11秒前
13秒前
竹筏过海应助知性的冰棍采纳,获得30
15秒前
San万完成签到,获得积分10
15秒前
小次之山发布了新的文献求助10
16秒前
慕青应助jinjin采纳,获得30
18秒前
18秒前
123456完成签到,获得积分10
20秒前
陆浩学化学完成签到,获得积分10
22秒前
王大炮发布了新的文献求助10
23秒前
李昆朋完成签到,获得积分10
23秒前
23秒前
Starwalker应助活泼冬天采纳,获得20
24秒前
24秒前
和谐的阁完成签到,获得积分10
26秒前
香蕉觅云应助张晓昊采纳,获得10
27秒前
27秒前
28秒前
范丞丞发布了新的文献求助10
29秒前
Hello应助王大炮采纳,获得10
30秒前
路冰完成签到,获得积分10
30秒前
Young发布了新的文献求助10
30秒前
33秒前
三年三班三井寿完成签到,获得积分10
35秒前
35秒前
以一发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992986
求助须知:如何正确求助?哪些是违规求助? 3533726
关于积分的说明 11263679
捐赠科研通 3273550
什么是DOI,文献DOI怎么找? 1806095
邀请新用户注册赠送积分活动 882942
科研通“疑难数据库(出版商)”最低求助积分说明 809629