入口
氢
储罐
氢气储存
材料科学
机械
压缩氢
环境科学
热力学
化学
机械工程
工程类
物理
有机化学
作者
Weiyi Cui,Yupeng Yuan,Hongyu Wang,Liang Tong
标识
DOI:10.1016/j.ijhydene.2023.10.300
摘要
This paper established a two-dimensional axisymmetric model with a marine high-pressure hydrogen storage tank as the research object. Using numerical simulation, the effects of different aspect ratios, inlet diameters, and inlet pipe lengths on the temperature rise of the hydrogen storage tank during the filling process were studied. As the L/D ratio of the hydrogen storage tank increases, the momentum of the hydrogen gas reaching the bottom of the tank gradually decreases, making it easier to form localized high-temperature regions. For a hydrogen storage tank with an L/D of 6.0, the difference between the maximum and average temperature at the end of filling was 155.85 K. In contrast, the temperature difference of the tank with an L/D of 3.6 was only 32.81 K. In addition, the inlet pipe delivers the hydrogen deep into the tank and reduces the obstructing effect of the existing hydrogen in the tank on the newly filled hydrogen. For smaller L/D hydrogen storage tanks, the inlet pipe may backfire and create a high-temperature zone at the shoulder of the tank. In contrast, for larger L/D hydrogen storage tanks, a suitable length of inlet pipe can deliver the hydrogen deep into the tank. This will enhance the gas flow inside the tank, facilitating heat exchange and avoiding the formation of localized high-temperature areas at the bottom of the tank. However, excessively long inlet pipes can also lead to high-temperature areas on the shoulders. At a specific charge mass flow rate, the lower the inlet diameter, the higher the hydrogen flow rate. The larger flow rate helped promote uniform hydrogen mixing in the tank and made it challenging to form localized high-temperature regions.
科研通智能强力驱动
Strongly Powered by AbleSci AI