清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements

高光谱成像 遥感 天蓬 RGB颜色模型 精准农业 环境科学 生物量(生态学) 人工智能 计算机科学 农学 地质学 地理 农业 生物 考古
作者
Yang Liu,Haikuan Feng,Jibo Yue,Yiguang Fan,Mingbo Bian,Yanpeng Ma,Xiuliang Jin,Xiaoyu Song,Guijun Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108229-108229 被引量:48
标识
DOI:10.1016/j.compag.2023.108229
摘要

Rapid and non-destructive potato above ground biomass (AGB) monitoring is a crucial step in the development of smart agriculture because AGB is closely related to crop growth, yield, and quality. Compared to time-consuming and laborious field surveys, unmanned aerial vehicle (UAV) remote sensing provides a new direction for large-scale AGB monitoring. However, estimating AGB using an optical remote sensing technique usually does not work well because of spectral saturation, but multi-source remote sensing feature fusion (e.g., fusing spectral and structural features) can mitigate that problem. Due to potato crop canopy structure and AGB change greatly during growth, the potential of fusing optical, textural (TFs), and structural features (SFs) for calculating potato AGB at multiple growth stages was unknown. In addition, the ability of optical features, TFs, and SFs and their combinations to estimate potato AGB had not been examined. Vegetation indices (RGB-VIs), TFs, and SFs were extracted from ultra-high spatial resolution RGB images and compared their performances for estimating potato AGB with those of hyperspectral vegetation indices (H-VIs) obtained from UAV hyperspectral images. The results revealed that each type of feature had its own advantages and limitations for potato AGB estimation. Except for canopy volume (CV) in SFs, the best H-VI, RGB-VI, and TF for estimating AGB in both single growth stages and the entire growth period were inconsistent. When estimating AGB with only a single type of feature, the model accuracy in descending order was SFs, TFs, H-VIs, and RGB-VIs. The fusion of any two types of remote sensing features improved AGB estimation model accuracy. Among them, TFs combined with SFs provided the best estimation performance. The fusion of RGB-VIs, TFs, and SFs produced the best AGB estimates precision (R2 = 0.81, RMSE = 207 kg/hm2, NRMSE = 17.40%). Since AGB was effectively estimated under different treatments in the field, the model applicability was confirmed. Using different types of remote sensing features, the Gaussian process regression method produced better estimation results than the partial least squares regression method did. This study provides an economic and effective method for monitoring the potato growth in the field, and thus helps improve farmland production and guide fertilization management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Axs完成签到,获得积分10
15秒前
su完成签到 ,获得积分10
19秒前
成就的孤晴完成签到 ,获得积分10
45秒前
coolplex完成签到 ,获得积分10
1分钟前
曾经不言完成签到 ,获得积分10
1分钟前
666完成签到 ,获得积分10
1分钟前
小乙猪完成签到 ,获得积分0
1分钟前
joanna完成签到,获得积分10
1分钟前
袁青欣完成签到 ,获得积分10
1分钟前
细心的如天完成签到 ,获得积分10
1分钟前
ee_Liu完成签到,获得积分10
2分钟前
方琼燕完成签到 ,获得积分10
2分钟前
Fx完成签到 ,获得积分10
2分钟前
沧海一粟米完成签到 ,获得积分10
2分钟前
wyh295352318完成签到 ,获得积分10
3分钟前
gszy1975完成签到,获得积分10
3分钟前
feiCheung完成签到 ,获得积分10
3分钟前
mark33442完成签到,获得积分10
3分钟前
萧水白完成签到,获得积分10
3分钟前
勤奋凡之完成签到 ,获得积分10
3分钟前
木又完成签到 ,获得积分10
3分钟前
Alan完成签到 ,获得积分10
4分钟前
科研通AI2S应助baobeikk采纳,获得10
4分钟前
含糊的茹妖完成签到 ,获得积分10
4分钟前
4分钟前
大大蕾完成签到 ,获得积分10
4分钟前
baobeikk完成签到,获得积分10
4分钟前
寒战完成签到 ,获得积分10
4分钟前
来一斤这种鱼完成签到 ,获得积分10
4分钟前
幽默大象完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
海阔天空完成签到,获得积分10
5分钟前
bestbanana发布了新的文献求助10
5分钟前
研友_LmgOaZ完成签到 ,获得积分0
5分钟前
Raul完成签到 ,获得积分10
5分钟前
zhugao完成签到,获得积分10
5分钟前
Glory完成签到 ,获得积分10
5分钟前
甜乎贝贝完成签到 ,获得积分10
5分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768808
捐赠科研通 2440236
什么是DOI,文献DOI怎么找? 1297340
科研通“疑难数据库(出版商)”最低求助积分说明 624925
版权声明 600792