Estimating potato above-ground biomass by using integrated unmanned aerial system-based optical, structural, and textural canopy measurements

高光谱成像 遥感 天蓬 RGB颜色模型 精准农业 环境科学 生物量(生态学) 人工智能 计算机科学 农学 地质学 地理 农业 生物 考古
作者
Yang Liu,Haikuan Feng,Jibo Yue,Yiguang Fan,Mingbo Bian,Yanpeng Ma,Xiuliang Jin,Xiaoyu Song,Guijun Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:213: 108229-108229 被引量:59
标识
DOI:10.1016/j.compag.2023.108229
摘要

Rapid and non-destructive potato above ground biomass (AGB) monitoring is a crucial step in the development of smart agriculture because AGB is closely related to crop growth, yield, and quality. Compared to time-consuming and laborious field surveys, unmanned aerial vehicle (UAV) remote sensing provides a new direction for large-scale AGB monitoring. However, estimating AGB using an optical remote sensing technique usually does not work well because of spectral saturation, but multi-source remote sensing feature fusion (e.g., fusing spectral and structural features) can mitigate that problem. Due to potato crop canopy structure and AGB change greatly during growth, the potential of fusing optical, textural (TFs), and structural features (SFs) for calculating potato AGB at multiple growth stages was unknown. In addition, the ability of optical features, TFs, and SFs and their combinations to estimate potato AGB had not been examined. Vegetation indices (RGB-VIs), TFs, and SFs were extracted from ultra-high spatial resolution RGB images and compared their performances for estimating potato AGB with those of hyperspectral vegetation indices (H-VIs) obtained from UAV hyperspectral images. The results revealed that each type of feature had its own advantages and limitations for potato AGB estimation. Except for canopy volume (CV) in SFs, the best H-VI, RGB-VI, and TF for estimating AGB in both single growth stages and the entire growth period were inconsistent. When estimating AGB with only a single type of feature, the model accuracy in descending order was SFs, TFs, H-VIs, and RGB-VIs. The fusion of any two types of remote sensing features improved AGB estimation model accuracy. Among them, TFs combined with SFs provided the best estimation performance. The fusion of RGB-VIs, TFs, and SFs produced the best AGB estimates precision (R2 = 0.81, RMSE = 207 kg/hm2, NRMSE = 17.40%). Since AGB was effectively estimated under different treatments in the field, the model applicability was confirmed. Using different types of remote sensing features, the Gaussian process regression method produced better estimation results than the partial least squares regression method did. This study provides an economic and effective method for monitoring the potato growth in the field, and thus helps improve farmland production and guide fertilization management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羊发布了新的文献求助10
刚刚
热情无心发布了新的文献求助10
1秒前
1秒前
1秒前
CipherSage应助外向的芒果采纳,获得10
1秒前
ex_ritian完成签到,获得积分10
1秒前
hunter发布了新的文献求助10
1秒前
1秒前
明亮的小懒虫完成签到 ,获得积分20
2秒前
2秒前
cy完成签到 ,获得积分10
2秒前
2秒前
我是CF大王完成签到,获得积分10
2秒前
核桃发布了新的文献求助30
3秒前
在水一方应助迷路冰巧采纳,获得10
3秒前
he完成签到,获得积分10
3秒前
qh5706发布了新的文献求助10
4秒前
4秒前
znnnnnnnnnn完成签到,获得积分10
4秒前
Halo完成签到,获得积分10
4秒前
4秒前
kk完成签到,获得积分10
4秒前
5秒前
5秒前
小福发布了新的文献求助10
5秒前
Jiayee完成签到 ,获得积分10
5秒前
若雨沫发布了新的文献求助10
6秒前
6秒前
王一添完成签到,获得积分10
6秒前
sgs2024完成签到,获得积分10
6秒前
6秒前
znnnnnnnnnn发布了新的文献求助10
7秒前
7秒前
7秒前
tomato完成签到,获得积分10
7秒前
星川发布了新的文献求助10
7秒前
一希完成签到,获得积分20
7秒前
8秒前
GD完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599035
求助须知:如何正确求助?哪些是违规求助? 4009790
关于积分的说明 12413421
捐赠科研通 3689444
什么是DOI,文献DOI怎么找? 2033850
邀请新用户注册赠送积分活动 1066993
科研通“疑难数据库(出版商)”最低求助积分说明 952128