Assessing AI-Powered Patient Education: A Case Study in Radiology

聊天机器人 可读性 医学 混乱 放射科 危害 完备性(序理论) 医学物理学 自然语言处理 计算机科学 人工智能 心理学 社会心理学 数学 精神分析 数学分析 程序设计语言
作者
Ian J. Kuckelman,Paul H. Yi,Molinna Bui,Ifeanyi Onuh,Jade A. Anderson,Andrew B. Ross
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (1): 338-342 被引量:20
标识
DOI:10.1016/j.acra.2023.08.020
摘要

Rationale and Objectives

With recent advancements in the power and accessibility of artificial intelligence (AI) Large Language Models (LLMs) patients might increasingly turn to these platforms to answer questions regarding radiologic examinations and procedures, despite valid concerns about the accuracy of information provided. This study aimed to assess the accuracy and completeness of information provided by the Bing Chatbot—a LLM powered by ChatGPT—on patient education for common radiologic exams.

Materials and Methods

We selected three common radiologic examinations and procedures: computed tomography (CT) abdomen, magnetic resonance imaging (MRI) spine, and bone biopsy. For each, ten questions were tested on the chatbot in two trials using three different chatbot settings. Two reviewers independently assessed the chatbot's responses for accuracy and completeness compared to an accepted online resource, radiologyinfo.org.

Results

Of the 360 reviews performed, 336 (93%) were rated "entirely correct" and 24 (7%) were "mostly correct," indicating a high level of reliability. Completeness ratings showed that 65% were "complete" and 35% were "mostly complete." The "More Creative" chatbot setting produced a higher proportion of responses rated "entirely correct" but there were otherwise no significant difference in ratings based on chatbot settings or exam types. The readability level was rated eighth-grade level.

Conclusion

The Bing Chatbot provided accurate responses answering all or most aspects of the question asked of it, with responses tending to err on the side of caution for nuanced questions. Importantly, no responses were inaccurate or had potential to cause harm or confusion for the user. Thus, LLM chatbots demonstrate potential to enhance patient education in radiology and could be integrated into patient portals for various purposes, including exam preparation and results interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助tooty采纳,获得10
刚刚
汉堡包应助悦耳听芹采纳,获得10
3秒前
zhu完成签到,获得积分10
3秒前
Lucia完成签到,获得积分10
4秒前
5秒前
NexusExplorer应助shy采纳,获得10
7秒前
Lucia发布了新的文献求助10
8秒前
JackRen发布了新的文献求助10
8秒前
8秒前
Polymer72应助木子李采纳,获得10
9秒前
993xd完成签到 ,获得积分10
10秒前
坚定的可愁完成签到,获得积分10
10秒前
南风不竞发布了新的文献求助10
10秒前
12秒前
14秒前
梓泽丘墟完成签到,获得积分0
15秒前
vincentbioinfo完成签到,获得积分10
15秒前
15秒前
Candice应助文静三颜采纳,获得10
16秒前
yang发布了新的文献求助10
16秒前
yjy完成签到 ,获得积分10
16秒前
张小馨完成签到 ,获得积分10
16秒前
17秒前
17秒前
wuwa完成签到,获得积分10
18秒前
立小里发布了新的文献求助10
19秒前
ffff123完成签到,获得积分10
19秒前
theday发布了新的文献求助10
19秒前
JackRen完成签到,获得积分10
20秒前
andy发布了新的文献求助10
21秒前
yifanchen应助龙超人采纳,获得10
22秒前
小熊发布了新的文献求助10
22秒前
CodeCraft应助MH采纳,获得10
22秒前
酷波er应助认真科研采纳,获得10
22秒前
shy发布了新的文献求助10
23秒前
24秒前
25秒前
寒冷的寻菱完成签到,获得积分10
26秒前
别具一格完成签到 ,获得积分10
26秒前
Dong完成签到 ,获得积分10
26秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343057
求助须知:如何正确求助?哪些是违规求助? 2970087
关于积分的说明 8642705
捐赠科研通 2650072
什么是DOI,文献DOI怎么找? 1451108
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407