Double Granularity Graph Network For Chinese Legal Question Answering

答疑 计算机科学 人工智能 基线(sea) 任务(项目管理) 水准点(测量) 粒度 图形 自然语言处理 法律案件 机器学习 情报检索 理论计算机科学 法学 管理 大地测量学 政治学 经济 地理 操作系统
作者
Jingpei Dan,TianYuan Zhang,Yuming Wang
标识
DOI:10.1109/ijcnn54540.2023.10192015
摘要

Legal question answering is a critical task in artificial intelligence. Since most legal data are presented in text, using natural language processing (NLP) to solve legal question answering is a current research direction. Compared with traditional question answering tasks, legal question answering often contains some potential information, such as legal events, crime process, litigants, and victims. This potential information suggests the legal question answering model reasoning's theme and can help the model improve its reasoning ability. In addition, the legal question answering task must answer based on relevant legal clauses, and the number of relevant legal clauses is usually a lot. Hence, the model needs to eliminate the influence of redundant and noisy clauses. Therefore, we propose a double-granularity-based graph neural network that can reason through potential legal events. Based on this research, we design an attention mechanism based on text interaction and calculate the attention by different window sizes score to decrease the influence of noise graph nodes. Finally, we evaluate the proposed model on the JEC-QA benchmark dataset to demonstrate our method's effectiveness. Experimental results show that the model performs well on the Chinese legal examination data and outperforms classical baselines. Out-performs the best baseline model by 7.08 in overall performance and outperforms the best baseline model in single-choice and multiple-choice questions; they are 7.52 and 6.41, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
safeheart完成签到,获得积分10
1秒前
夏安完成签到,获得积分10
1秒前
李健应助TangQQ采纳,获得10
1秒前
靴子发布了新的文献求助10
1秒前
Akim应助小七采纳,获得10
1秒前
xhmmm发布了新的文献求助10
1秒前
2秒前
2秒前
斯文败类应助wyx采纳,获得10
2秒前
追寻航空完成签到,获得积分10
3秒前
4秒前
4秒前
小蘑菇应助江上采纳,获得10
4秒前
刘欢发布了新的文献求助10
4秒前
xiaojinzi完成签到,获得积分10
5秒前
汉堡包应助wanwan采纳,获得10
5秒前
王京华发布了新的文献求助10
6秒前
6秒前
6秒前
ylflammps发布了新的文献求助30
6秒前
爆米花应助贝博拉采纳,获得10
6秒前
7秒前
重庆马思纯完成签到,获得积分10
7秒前
7秒前
7秒前
柔弱云朵完成签到,获得积分0
7秒前
TB123完成签到 ,获得积分10
8秒前
我是老大应助yfy_fairy采纳,获得10
8秒前
善学以致用应助jeremy采纳,获得10
9秒前
9秒前
尤寄风发布了新的文献求助10
9秒前
Jasper应助天空下的回忆采纳,获得10
9秒前
9秒前
王萍23333完成签到,获得积分10
10秒前
wang发布了新的文献求助10
10秒前
Cys完成签到,获得积分10
10秒前
无极微光应助心碎小文采纳,获得20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502