Vision Transformer based ResNet Model for Pneumonia Prediction

计算机科学 残差神经网络 变压器 人工智能 深度学习 工程类 电气工程 电压
作者
Thatikonda Sai Sowmya,Thumma Narasimhulu,Gurram Sunitha,T Manikanta,Thirupathi Venkatesh
标识
DOI:10.1109/icesc57686.2023.10193644
摘要

This research study aims to develop a pneumonia detection system using vision transformers. Pneumonia is a very serious respiratory illness that may result in severe health issues, and early detection is essential for effective treatment. Deep learning-based computer vision algorithms have yielded encouraging results in medical image analysis in recent years, and vision transformers have emerged as a potent tool for processing visual data. The proposed system uses a vision transformer to process chest x-ray images and extract visual traits, which can be utilized for classification. The proposed model "Vit_base_resnet50_224_in21k" is trained on a vast and diverse dataset of annotated chest x-ray images to understand the patterns and characteristics of pneumonia. The system's performance is estimated using standard evaluation parameters - accuracy, loss, specificity, sensitivity, F1-score and ROC curve. The proposed model has achieved a performance accuracy of 92.96% for pneumonia detection. The results demonstrate the potential of vision transformers in chest x-ray image analysis and contribute to the development of more accurate and efficient tools for pneumonia detection. This system has the potential to assist healthcare professionals in making faster and more accurate diagnosis, which can ultimately improve outcomes and save lives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助知性的书竹采纳,获得10
刚刚
妖娃娃发布了新的文献求助600
刚刚
Singularity应助meisisi采纳,获得20
1秒前
1秒前
4秒前
6秒前
6秒前
科目三应助秀丽的正豪采纳,获得30
7秒前
严小赖发布了新的文献求助20
8秒前
10秒前
几几完成签到,获得积分10
11秒前
11秒前
光亮妙之发布了新的文献求助10
13秒前
欣喜战斗机完成签到,获得积分10
15秒前
英姑应助vikey采纳,获得10
15秒前
16秒前
17秒前
xuzj完成签到 ,获得积分10
18秒前
充电宝应助朴素的不乐采纳,获得10
20秒前
映寒完成签到,获得积分10
22秒前
23秒前
27秒前
28秒前
xml发布了新的文献求助10
31秒前
SciGPT应助sunrase采纳,获得10
31秒前
缓慢的海云完成签到,获得积分10
32秒前
www发布了新的文献求助10
32秒前
33秒前
33秒前
vikey发布了新的文献求助10
33秒前
35秒前
苗条涵柏发布了新的文献求助10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
隐形曼青应助科研通管家采纳,获得10
36秒前
yang应助科研通管家采纳,获得10
36秒前
小二郎应助科研通管家采纳,获得10
36秒前
小马甲应助科研通管家采纳,获得10
36秒前
斯文败类应助科研通管家采纳,获得10
36秒前
英姑应助调皮的蓝天采纳,获得10
36秒前
烟花应助科研通管家采纳,获得10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079