Vision Transformer based ResNet Model for Pneumonia Prediction

计算机科学 残差神经网络 变压器 人工智能 深度学习 工程类 电气工程 电压
作者
Thatikonda Sai Sowmya,Thumma Narasimhulu,Gurram Sunitha,T Manikanta,Thirupathi Venkatesh
标识
DOI:10.1109/icesc57686.2023.10193644
摘要

This research study aims to develop a pneumonia detection system using vision transformers. Pneumonia is a very serious respiratory illness that may result in severe health issues, and early detection is essential for effective treatment. Deep learning-based computer vision algorithms have yielded encouraging results in medical image analysis in recent years, and vision transformers have emerged as a potent tool for processing visual data. The proposed system uses a vision transformer to process chest x-ray images and extract visual traits, which can be utilized for classification. The proposed model "Vit_base_resnet50_224_in21k" is trained on a vast and diverse dataset of annotated chest x-ray images to understand the patterns and characteristics of pneumonia. The system's performance is estimated using standard evaluation parameters - accuracy, loss, specificity, sensitivity, F1-score and ROC curve. The proposed model has achieved a performance accuracy of 92.96% for pneumonia detection. The results demonstrate the potential of vision transformers in chest x-ray image analysis and contribute to the development of more accurate and efficient tools for pneumonia detection. This system has the potential to assist healthcare professionals in making faster and more accurate diagnosis, which can ultimately improve outcomes and save lives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助三家分晋采纳,获得10
1秒前
1秒前
1秒前
1秒前
小许的大米14完成签到,获得积分10
1秒前
超帅孱完成签到,获得积分10
2秒前
balko发布了新的文献求助10
2秒前
jjbl发布了新的文献求助10
3秒前
科研奇才完成签到,获得积分20
3秒前
ha发布了新的文献求助10
3秒前
科研通AI2S应助Patrick采纳,获得10
4秒前
wjwless发布了新的文献求助10
5秒前
5秒前
nono发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
fwb完成签到,获得积分10
7秒前
钮钴禄氏梅完成签到,获得积分10
8秒前
8秒前
chen完成签到,获得积分10
9秒前
10秒前
NexusExplorer应助Jepsen采纳,获得10
11秒前
13秒前
落后的亦寒完成签到,获得积分20
13秒前
wjwless完成签到,获得积分10
13秒前
14秒前
14秒前
砚草难书完成签到,获得积分10
14秒前
岚岚完成签到,获得积分10
15秒前
15秒前
飞羽发布了新的文献求助10
16秒前
田様应助loeyyu采纳,获得10
16秒前
chen发布了新的文献求助10
16秒前
16秒前
17秒前
无花果应助Della采纳,获得30
17秒前
17秒前
勤劳的碧空完成签到 ,获得积分10
17秒前
万金油完成签到 ,获得积分10
17秒前
和谐的冰之完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416856
求助须知:如何正确求助?哪些是违规求助? 4532976
关于积分的说明 14137292
捐赠科研通 4448956
什么是DOI,文献DOI怎么找? 2440505
邀请新用户注册赠送积分活动 1432315
关于科研通互助平台的介绍 1409793