Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level

侵染 棉蚜 人工智能 卷积神经网络 计算机科学 苗木 模式识别(心理学) 生物 有害生物分析 园艺 蚜虫科 同翅目
作者
Xin Xu,Jing Shi,Yongqin Chen,Qiang He,Liangliang Liu,T. Sun,Ruifeng Ding,Yanhui Lu,Xue Chaoqun,Hongbo Qiao
出处
期刊:Frontiers in Plant Science [Frontiers Media SA]
卷期号:14 被引量:9
标识
DOI:10.3389/fpls.2023.1200901
摘要

Aphis gossypii Glover is a major insect pest in cotton production, which can cause yield reduction in severe cases. In this paper, we proposed the A. gossypii infestation monitoring method, which identifies the infestation level of A. gossypii at the cotton seedling stage, and can improve the efficiency of early warning and forecasting of A. gossypii, and achieve precise prevention and cure according to the predicted infestation level. We used smartphones to collect A. gossypii infestation images and compiled an infestation image data set. And then constructed, trained, and tested three different A. gossypii infestation recognition models based on Faster Region-based Convolutional Neural Network (R-CNN), You Only Look Once (YOLO)v5 and single-shot detector (SSD) models. The results showed that the YOLOv5 model had the highest mean average precision (mAP) value (95.7%) and frames per second (FPS) value (61.73) for the same conditions. In studying the influence of different image resolutions on the performance of the YOLOv5 model, we found that YOLOv5s performed better than YOLOv5x in terms of overall performance, with the best performance at an image resolution of 640×640 (mAP of 96.8%, FPS of 71.43). And the comparison with the latest YOLOv8s showed that the YOLOv5s performed better than the YOLOv8s. Finally, the trained model was deployed to the Android mobile, and the results showed that mobile-side detection was the best when the image resolution was 256×256, with an accuracy of 81.0% and FPS of 6.98. The real-time recognition system established in this study can provide technical support for infestation forecasting and precise prevention of A. gossypii.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李栗粒粒完成签到,获得积分10
1秒前
深情安青应助整齐绿凝采纳,获得20
1秒前
yummy发布了新的文献求助20
2秒前
2秒前
飞奔的小田完成签到,获得积分10
3秒前
我是老大应助项初蝶采纳,获得10
3秒前
3秒前
lbc发布了新的文献求助10
3秒前
疯狂的翠梅完成签到,获得积分10
3秒前
科研通AI2S应助ZXB采纳,获得10
5秒前
MchemG应助粥可温采纳,获得10
5秒前
脑洞疼应助粥可温采纳,获得10
5秒前
li完成签到,获得积分10
5秒前
隐形曼青应助粥可温采纳,获得10
5秒前
阿嘎普莱特完成签到,获得积分10
6秒前
JamesPei应助MikeBot采纳,获得10
6秒前
wzm完成签到,获得积分10
6秒前
faye完成签到,获得积分10
7秒前
wanci应助sun采纳,获得10
7秒前
心意发布了新的文献求助10
8秒前
yuan完成签到 ,获得积分10
8秒前
9秒前
panfan完成签到,获得积分10
9秒前
Owen应助Rui采纳,获得10
9秒前
moruifei完成签到,获得积分10
9秒前
小晓完成签到,获得积分10
10秒前
10秒前
2420083884发布了新的文献求助10
12秒前
可爱的函函应助ziyue采纳,获得10
12秒前
李爱国应助黯然采纳,获得10
13秒前
咚咚咚完成签到,获得积分10
13秒前
13秒前
晚风完成签到,获得积分10
13秒前
13秒前
Orange应助Mtp采纳,获得10
15秒前
15秒前
马思雨完成签到,获得积分10
15秒前
潇123456完成签到,获得积分20
16秒前
16秒前
科研通AI5应助丫头采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3582264
求助须知:如何正确求助?哪些是违规求助? 3151751
关于积分的说明 9489358
捐赠科研通 2853956
什么是DOI,文献DOI怎么找? 1568974
邀请新用户注册赠送积分活动 734850
科研通“疑难数据库(出版商)”最低求助积分说明 720884