和厚朴酚
安普克
药理学
化学
周围神经病变
坐骨神经
细胞生物学
糖尿病
医学
内分泌学
内科学
生物
生物化学
酶
蛋白激酶A
作者
Man Hu,Wen Jiang,Chen Ye,Ting Hu,Qingqing Yu,Moran Meng,Lijuan Sun,Jichao Liang,Yong Chen
摘要
Schwann cells injury induced by high glucose (HG) contributes to the development of diabetic peripheral neuropathy (DPN). Honokiol has been reported to regulate glucose metabolism, however, its effect on DPN and the precise molecular mechanisms remain unclear. This study aimed to investigate the role of AMPK/SIRT1/PGC-1α axis in the protective effects of honokiol on DPN. The biochemical assay and JC-1 staining results demonstrated that honokiol reduced HG-induced oxidative stress and ferroptosis as well as mitochondrial dysfunction in Schwann cells. RT-qPCR and western blotting were utilized to investigate the mechanism of action of honokiol, and the results showed that HG-induced inhibition of AMPK/SIRT1/PGC-1α axis and changes of downstream gene expression profile were restored by honokiol. Moreover, silencing of Sirt1 by siRNA delivery markedly diminished the changes of gene expression profile induced by honokiol in HG-induced Schwann cells. More importantly, we found that administration of honokiol remarkably attenuated DPN via improving sciatic nerve conduction velocity and increasing thermal and mechanical sensitivity in streptozotocin-induced diabetic rats. Collectively, these results demonstrate that honokiol can attenuate HG-induced Schwann cells injury and peripheral nerve dysfunction, suggesting a novel potential strategy for treatment of DPN.
科研通智能强力驱动
Strongly Powered by AbleSci AI