Deep learning integrates histopathology and proteogenomics at a pan-cancer level

蛋白质基因组学 可解释性 预测能力 蛋白质组学 转录组 人工智能 癌症 概化理论 生物 计算机科学 计算生物学 机器学习 病理 生物信息学 医学 内科学 基因 心理学 认识论 发展心理学 哲学 基因表达 生物化学
作者
Joshua M. Wang,Runyu Hong,Elizabeth G. Demicco,Jimin Tan,Rossana Lazcano,André L. Moreira,Yize Li,Anna Calinawan,Narges Razavian,Tobias Schraink,Michael A. Gillette,Gilbert S. Omenn,Eunkyung An,Henry Rodriguez,Aristotelis Tsirigos,Kelly V. Ruggles,Li Ding,Ana I. Robles,D.R. Mani,Karin Rodland,Alexander J. Lazar,Wenke Liu,David Fenyö,François Aguet,Yo Akiyama,Shankara Anand,Meenakshi Anurag,Özgün Babur,Jasmin Bavarva,Chet Birger,Michael J. Birrer,Lewis C. Cantley,Song Cao,Steven A. Carr,Michele Ceccarelli,Daniel W. Chan,Arul M. Chinnaiyan,Hanbyul Cho,Shrabanti Chowdhury,Marcin Cieślik,Karl R. Clauser,Antonio Colaprico,Daniel Cui Zhou,Felipe da Veiga Leprevost,Corbin Day,Saravana M. Dhanasekaran,Marcin J. Domagalski,Yongchao Dou,Brian J. Druker,Nathan Edwards,Matthew J. Ellis,Myvizhi Esai Selvan,Steven M. Foltz,Alicia Francis,Yifat Geffen,Gad Getz,Tania J. González-Robles,Sara J.C. Gosline,Zeynep H. Gümüş,David I. Heiman,Tara Hiltke,Galen Hostetter,Yingwei Hu,Chen Huang,Emily M. Huntsman,Antonio Iavarone,Eric J. Jaehnig,Scott D. Jewell,Jiayi Ji,Wen Jiang,Jared L. Johnson,Lizabeth Katsnelson,Karen A. Ketchum,Iga Kołodziejczak,Karsten Krug,Chandan Kumar‐Sinha,Jonathan T. Lei,Wen-Wei Liang,Yuxing Liao,Caleb M. Lindgren,Tao Liu,Weiping Ma,Fernanda Martins Rodrigues,Wilson McKerrow,Mehdi Mesri,Alexey I. Nesvizhskii,Chelsea J. Newton,Robert Oldroyd,Amanda G. Paulovich,Samuel Payne,Francesca Petralia,Pietro Pugliese,Boris Reva,Dmitry Rykunov,Shankha Satpathy,Sara R. Savage,Eric E. Schadt,Michael Schnaubelt,Stephan C. Schürer,Zhiao Shi,Richard Smith,Xiaoyu Song,Yizhe Song,Vasileios Stathias,Erik Storrs,Nadezhda V. Terekhanova,Ratna R. Thangudu,Mathangi Thiagarajan,Nicole Tignor,Liang-Bo Wang,Pei Wang,Ying Wang,Bo Wen,Maciej Wiznerowicz,Yige Wu,Matthew A. Wyczalkowski,Lijun Yao,Tomer M. Yaron,Xinpei Yi,Bing Zhang,Hui Zhang,Qing Zhang,Xu Zhang,Zhen Zhang
出处
期刊:Cell reports medicine [Elsevier]
卷期号:4 (9): 101173-101173 被引量:5
标识
DOI:10.1016/j.xcrm.2023.101173
摘要

We introduce a pioneering approach that integrates pathology imaging with transcriptomics and proteomics to identify predictive histology features associated with critical clinical outcomes in cancer. We utilize 2,755 H&E-stained histopathological slides from 657 patients across 6 cancer types from CPTAC. Our models effectively recapitulate distinctions readily made by human pathologists: tumor vs. normal (AUROC = 0.995) and tissue-of-origin (AUROC = 0.979). We further investigate predictive power on tasks not normally performed from H&E alone, including TP53 prediction and pathologic stage. Importantly, we describe predictive morphologies not previously utilized in a clinical setting. The incorporation of transcriptomics and proteomics identifies pathway-level signatures and cellular processes driving predictive histology features. Model generalizability and interpretability is confirmed using TCGA. We propose a classification system for these tasks, and suggest potential clinical applications for this integrated human and machine learning approach. A publicly available web-based platform implements these models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zengxi246发布了新的文献求助10
1秒前
1秒前
大气水池完成签到,获得积分10
1秒前
帅气的宽完成签到 ,获得积分10
2秒前
科研通AI2S应助28551采纳,获得10
2秒前
陈冲发布了新的文献求助10
2秒前
2秒前
Elian发布了新的文献求助10
2秒前
3秒前
3秒前
chenaio完成签到,获得积分10
4秒前
木子李完成签到,获得积分10
4秒前
azhu关注了科研通微信公众号
5秒前
6秒前
6秒前
FashionBoy应助七七采纳,获得10
7秒前
被动科研应助七七采纳,获得10
7秒前
7秒前
pluto应助鹿静枫采纳,获得10
8秒前
平常以丹发布了新的文献求助10
8秒前
Jasper应助yamo采纳,获得10
9秒前
9秒前
10秒前
10秒前
68完成签到,获得积分10
10秒前
完美世界应助陈冲采纳,获得10
10秒前
wanci应助酷炫的不悔采纳,获得10
10秒前
CipherSage应助福西西采纳,获得10
10秒前
11秒前
ZH发布了新的文献求助10
11秒前
齐泽克发布了新的文献求助10
11秒前
HIKING完成签到,获得积分10
11秒前
脑洞疼应助zengxi246采纳,获得10
12秒前
yanghq13发布了新的文献求助10
13秒前
qinqiny完成签到 ,获得积分10
13秒前
lucky完成签到,获得积分10
14秒前
cat完成签到 ,获得积分10
14秒前
始终完成签到,获得积分10
15秒前
肌肉干细胞完成签到,获得积分10
15秒前
汉堡包应助eugene采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079267
求助须知:如何正确求助?哪些是违规求助? 2731896
关于积分的说明 7521337
捐赠科研通 2380638
什么是DOI,文献DOI怎么找? 1262413
科研通“疑难数据库(出版商)”最低求助积分说明 611928
版权声明 597414