亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TLS-MHSA: An Efficient Detection Model for Encrypted Malicious Traffic based on Multi-Head Self-Attention Mechanism

计算机科学 加密 协议(科学) 钥匙(锁) 传输层安全 计算机安全 构造(python库) 超文本传输协议 光学(聚焦) 计算机网络 互联网 病理 万维网 物理 光学 替代医学 医学
作者
Jinfu Chen,Luo Song,Saihua Cai,Haodi Xie,Shang Yin,Bilal Ahmad
出处
期刊:ACM transactions on privacy and security [Association for Computing Machinery]
卷期号:26 (4): 1-21 被引量:1
标识
DOI:10.1145/3613960
摘要

In recent years, the use of TLS (Transport Layer Security) protocol to protect communication information has become increasingly popular as users are more aware of network security. However, hackers have also exploited the salient features of the TLS protocol to carry out covert malicious attacks, which threaten the security of network space. Currently, the commonly used traffic detection methods are not always reliable when applied to the problem of encrypted malicious traffic detection due to their limitations. The most significant problem is that these methods do not focus on the key features of encrypted traffic. To address this problem, this study proposes an efficient detection model for encrypted malicious traffic based on transport layer security protocol and a multi-head self-attention mechanism called TLS-MHSA. Firstly, we extract the features of TLS traffic during pre-processing and perform traffic statistics to filter redundant features. Then, we use a multi-head self-attention mechanism to focus on learning key features as well as generate the most important combined features to construct the detection model, thereby detecting the encrypted malicious traffic. Finally, we use a public dataset to verify the effectiveness and efficiency of the TLS-MHSA model, and the experimental results show that the proposed TLS-MHSA model has high precision, recall, F1-measure, AUC-ROC as well as higher stability than seven state-of-the-art detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
过时的不评完成签到,获得积分10
4秒前
klio完成签到 ,获得积分10
16秒前
17秒前
荀煜祺发布了新的文献求助10
22秒前
小付完成签到,获得积分10
51秒前
脑洞疼应助cccc1111111采纳,获得10
51秒前
1分钟前
cccc1111111发布了新的文献求助10
1分钟前
zhang完成签到 ,获得积分10
1分钟前
隐形曼青应助薛艳采纳,获得10
1分钟前
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
Beverly完成签到,获得积分20
1分钟前
Beverly发布了新的文献求助10
1分钟前
1分钟前
慕青应助Beverly采纳,获得10
1分钟前
1分钟前
NS完成签到,获得积分10
2分钟前
2分钟前
谨慎秋珊完成签到 ,获得积分10
2分钟前
是谁还没睡完成签到 ,获得积分10
3分钟前
科研通AI5应助猪猪hero采纳,获得30
3分钟前
mjf111完成签到,获得积分10
3分钟前
小奋青完成签到 ,获得积分10
3分钟前
Jadyra给小张不慌的求助进行了留言
3分钟前
上官若男应助猪猪hero采纳,获得30
3分钟前
3分钟前
3分钟前
猪猪hero发布了新的文献求助30
3分钟前
Jasper应助sunyafei采纳,获得10
3分钟前
猪猪hero发布了新的文献求助30
3分钟前
年轻的凝云完成签到 ,获得积分10
3分钟前
爆米花应助科研通管家采纳,获得30
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
3分钟前
sunyafei发布了新的文献求助10
3分钟前
xiubo128完成签到 ,获得积分10
3分钟前
猪猪hero完成签到,获得积分10
3分钟前
3分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767074
求助须知:如何正确求助?哪些是违规求助? 3311529
关于积分的说明 10158838
捐赠科研通 3026733
什么是DOI,文献DOI怎么找? 1661299
邀请新用户注册赠送积分活动 793951
科研通“疑难数据库(出版商)”最低求助积分说明 755878