BiFTransNet: A unified and simultaneous segmentation network for gastrointestinal images of CT & MRI

计算机科学 分割 人工智能 卷积神经网络 编码器 深度学习 图像分割 掷骰子 模式识别(心理学) 几何学 数学 操作系统
作者
Xin Jiang,Yizhou Ding,Mingzhe Liu,Yong Wang,Yan Li,Zongda Wu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107326-107326 被引量:22
标识
DOI:10.1016/j.compbiomed.2023.107326
摘要

Gastrointestinal (GI) cancer is a malignancy affecting the digestive organs. During radiation therapy, the radiation oncologist must precisely aim the X-ray beam at the tumor while avoiding unaffected areas of the stomach and intestines. Consequently, accurate, automated GI image segmentation is urgently needed in clinical practice. While the fully convolutional network (FCN) and U-Net framework have shown impressive results in medical image segmentation, their ability to model long-range dependencies is constrained by the convolutional kernel's restricted receptive field. The transformer has a robust capacity for global modeling owing to its inherent global self-attention mechanism. The TransUnet model leverages the strengths of both the convolutional neural network (CNN) and transformer models through a hybrid CNN-transformer encoder. However, the concatenation of high- and low-level features in the decoder is ineffective in fusing global and local information. To overcome this limitation, we propose an innovative transformer-based medical image segmentation architecture called BiFTransNet, which introduces a BiFusion module into the decoder stage, enabling effective global and local feature fusion by enabling feature integration from various modules. Further, a multilevel loss (ML) strategy is introduced to oversee the learning process of each decoder layer and optimize the use of globally and locally fused contextual features at different scales. Our method achieved a Dice score of 89.51% and an intersection-over-union (IoU) score of 86.54% on the UW-Madison Gastrointestinal Segmentation dataset. Moreover, our method attained a Dice score of 78.77% and a Hausdorff distance (HD) of 27.94% on the Synapse Multi-organ Segmentation dataset. Compared with the state-of-the-art methods, our proposed method achieves superior segmentation performance in gastrointestinal segmentation tasks. More significantly, our method can be easily extended to medical segmentation in different modalities such as CT and MRI. Our method achieves clinical multimodal medical segmentation and provides decision supports for clinical radiotherapy plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吐司大王发布了新的文献求助10
3秒前
6秒前
妖九笙关注了科研通微信公众号
8秒前
karolyn完成签到,获得积分10
9秒前
高脂悍婦完成签到,获得积分10
9秒前
John发布了新的文献求助10
9秒前
LLZ完成签到,获得积分10
13秒前
狂野悟空完成签到,获得积分10
16秒前
华仔应助体贴汽车采纳,获得10
19秒前
19秒前
搞一篇SCI发布了新的文献求助10
20秒前
Active发布了新的文献求助10
21秒前
共享精神应助HHG00WYy采纳,获得10
21秒前
科研通AI2S应助超越radiology采纳,获得10
23秒前
吴旭东发布了新的文献求助10
25秒前
wei发布了新的文献求助10
25秒前
小白白发布了新的文献求助10
26秒前
26秒前
华仔应助失眠迎松采纳,获得10
27秒前
27秒前
田様应助2331547774采纳,获得10
28秒前
小马甲应助Yolo采纳,获得10
29秒前
体贴汽车发布了新的文献求助10
31秒前
十二发布了新的文献求助20
32秒前
刘雨森完成签到 ,获得积分10
33秒前
beituo发布了新的文献求助10
34秒前
34秒前
35秒前
35秒前
可爱的函函应助shinn采纳,获得50
36秒前
妖九笙发布了新的文献求助10
37秒前
39秒前
Yolo发布了新的文献求助10
40秒前
顺利的历发布了新的文献求助10
40秒前
40秒前
所所应助金阿垚在科研采纳,获得10
41秒前
asir完成签到,获得积分20
42秒前
43秒前
十二发布了新的文献求助10
43秒前
asir发布了新的文献求助30
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163719
捐赠科研通 3247427
什么是DOI,文献DOI怎么找? 1793827
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804488