BiFTransNet: A unified and simultaneous segmentation network for gastrointestinal images of CT & MRI

计算机科学 分割 人工智能 卷积神经网络 编码器 深度学习 图像分割 掷骰子 模式识别(心理学) 几何学 数学 操作系统
作者
Xin Jiang,Yizhou Ding,Mingzhe Liu,Yong Wang,Yan Li,Zongda Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107326-107326 被引量:22
标识
DOI:10.1016/j.compbiomed.2023.107326
摘要

Gastrointestinal (GI) cancer is a malignancy affecting the digestive organs. During radiation therapy, the radiation oncologist must precisely aim the X-ray beam at the tumor while avoiding unaffected areas of the stomach and intestines. Consequently, accurate, automated GI image segmentation is urgently needed in clinical practice. While the fully convolutional network (FCN) and U-Net framework have shown impressive results in medical image segmentation, their ability to model long-range dependencies is constrained by the convolutional kernel's restricted receptive field. The transformer has a robust capacity for global modeling owing to its inherent global self-attention mechanism. The TransUnet model leverages the strengths of both the convolutional neural network (CNN) and transformer models through a hybrid CNN-transformer encoder. However, the concatenation of high- and low-level features in the decoder is ineffective in fusing global and local information. To overcome this limitation, we propose an innovative transformer-based medical image segmentation architecture called BiFTransNet, which introduces a BiFusion module into the decoder stage, enabling effective global and local feature fusion by enabling feature integration from various modules. Further, a multilevel loss (ML) strategy is introduced to oversee the learning process of each decoder layer and optimize the use of globally and locally fused contextual features at different scales. Our method achieved a Dice score of 89.51% and an intersection-over-union (IoU) score of 86.54% on the UW-Madison Gastrointestinal Segmentation dataset. Moreover, our method attained a Dice score of 78.77% and a Hausdorff distance (HD) of 27.94% on the Synapse Multi-organ Segmentation dataset. Compared with the state-of-the-art methods, our proposed method achieves superior segmentation performance in gastrointestinal segmentation tasks. More significantly, our method can be easily extended to medical segmentation in different modalities such as CT and MRI. Our method achieves clinical multimodal medical segmentation and provides decision supports for clinical radiotherapy plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzqx完成签到,获得积分10
1秒前
起司嗯完成签到,获得积分10
1秒前
开放鸵鸟完成签到,获得积分10
1秒前
徐徐发布了新的文献求助10
1秒前
ZZZ发布了新的文献求助10
2秒前
懵懂的子骞完成签到 ,获得积分10
3秒前
mammoth发布了新的文献求助40
3秒前
3秒前
英俊的铭应助Chang采纳,获得10
4秒前
4秒前
4秒前
kk子完成签到,获得积分10
5秒前
夏橪发布了新的文献求助10
5秒前
JamesPei应助lunan采纳,获得10
6秒前
传奇3应助qing采纳,获得10
6秒前
卫尔摩斯完成签到,获得积分10
7秒前
7秒前
7秒前
沉默牛排发布了新的文献求助10
7秒前
科研通AI5应助独特微笑采纳,获得10
7秒前
8秒前
8秒前
碧玉墨绿完成签到,获得积分10
8秒前
xiaoma完成签到,获得积分10
8秒前
9秒前
潇洒的擎苍完成签到,获得积分10
9秒前
刘晓纳发布了新的文献求助10
9秒前
晴子发布了新的文献求助10
9秒前
洛鸢发布了新的文献求助10
10秒前
立马毕业完成签到,获得积分10
10秒前
卫尔摩斯发布了新的文献求助10
10秒前
BINBIN完成签到 ,获得积分10
10秒前
hfgeyt完成签到,获得积分10
11秒前
sakurai应助背后的诺言采纳,获得10
11秒前
湘华发布了新的文献求助10
12秒前
Jenny应助lan采纳,获得10
12秒前
单薄的飞松完成签到 ,获得积分10
12秒前
醒醒发布了新的文献求助10
12秒前
13秒前
恨安完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762