BiFTransNet: A unified and simultaneous segmentation network for gastrointestinal images of CT & MRI

计算机科学 分割 人工智能 卷积神经网络 编码器 深度学习 图像分割 掷骰子 模式识别(心理学) 几何学 数学 操作系统
作者
Xin Jiang,Yizhou Ding,Mingzhe Liu,Yong Wang,Yan Li,Zongda Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107326-107326 被引量:22
标识
DOI:10.1016/j.compbiomed.2023.107326
摘要

Gastrointestinal (GI) cancer is a malignancy affecting the digestive organs. During radiation therapy, the radiation oncologist must precisely aim the X-ray beam at the tumor while avoiding unaffected areas of the stomach and intestines. Consequently, accurate, automated GI image segmentation is urgently needed in clinical practice. While the fully convolutional network (FCN) and U-Net framework have shown impressive results in medical image segmentation, their ability to model long-range dependencies is constrained by the convolutional kernel's restricted receptive field. The transformer has a robust capacity for global modeling owing to its inherent global self-attention mechanism. The TransUnet model leverages the strengths of both the convolutional neural network (CNN) and transformer models through a hybrid CNN-transformer encoder. However, the concatenation of high- and low-level features in the decoder is ineffective in fusing global and local information. To overcome this limitation, we propose an innovative transformer-based medical image segmentation architecture called BiFTransNet, which introduces a BiFusion module into the decoder stage, enabling effective global and local feature fusion by enabling feature integration from various modules. Further, a multilevel loss (ML) strategy is introduced to oversee the learning process of each decoder layer and optimize the use of globally and locally fused contextual features at different scales. Our method achieved a Dice score of 89.51% and an intersection-over-union (IoU) score of 86.54% on the UW-Madison Gastrointestinal Segmentation dataset. Moreover, our method attained a Dice score of 78.77% and a Hausdorff distance (HD) of 27.94% on the Synapse Multi-organ Segmentation dataset. Compared with the state-of-the-art methods, our proposed method achieves superior segmentation performance in gastrointestinal segmentation tasks. More significantly, our method can be easily extended to medical segmentation in different modalities such as CT and MRI. Our method achieves clinical multimodal medical segmentation and provides decision supports for clinical radiotherapy plans.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王玉完成签到 ,获得积分10
刚刚
1秒前
华仔应助或许度采纳,获得10
1秒前
聪明钢铁侠应助天之道采纳,获得10
1秒前
无限毛豆完成签到 ,获得积分10
2秒前
3秒前
高高发布了新的文献求助10
3秒前
聪慧烤鸡发布了新的文献求助10
3秒前
5秒前
5秒前
Guo99完成签到,获得积分10
5秒前
在水一方应助元谷雪采纳,获得10
6秒前
6秒前
昭昭找不到完成签到,获得积分10
7秒前
7秒前
清脆剑封完成签到,获得积分10
8秒前
8秒前
小米粥发布了新的文献求助10
8秒前
9秒前
10秒前
bsnc完成签到,获得积分10
10秒前
安妮发布了新的文献求助10
10秒前
外向冰绿完成签到,获得积分10
11秒前
传奇3应助高高采纳,获得10
11秒前
风清扬发布了新的文献求助10
11秒前
郝誉发布了新的文献求助10
11秒前
Jasper应助欣喜易形采纳,获得10
12秒前
Uranus发布了新的文献求助10
13秒前
ALDRC完成签到,获得积分10
13秒前
14秒前
或许度发布了新的文献求助10
14秒前
SciGPT应助Xl采纳,获得10
15秒前
wanci应助明理的帆布鞋采纳,获得10
17秒前
科研通AI6应助fzzf采纳,获得10
17秒前
小二郎应助北克采纳,获得10
17秒前
顾矜应助感动的小懒虫采纳,获得10
17秒前
小火花完成签到,获得积分10
18秒前
19秒前
JM关闭了JM文献求助
20秒前
烟花应助微光熠采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277