BiFTransNet: A unified and simultaneous segmentation network for gastrointestinal images of CT & MRI

计算机科学 分割 人工智能 卷积神经网络 编码器 深度学习 图像分割 掷骰子 模式识别(心理学) 几何学 数学 操作系统
作者
Xin Jiang,Yizhou Ding,Mingzhe Liu,Yong Wang,Yan Li,Zongda Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107326-107326 被引量:22
标识
DOI:10.1016/j.compbiomed.2023.107326
摘要

Gastrointestinal (GI) cancer is a malignancy affecting the digestive organs. During radiation therapy, the radiation oncologist must precisely aim the X-ray beam at the tumor while avoiding unaffected areas of the stomach and intestines. Consequently, accurate, automated GI image segmentation is urgently needed in clinical practice. While the fully convolutional network (FCN) and U-Net framework have shown impressive results in medical image segmentation, their ability to model long-range dependencies is constrained by the convolutional kernel's restricted receptive field. The transformer has a robust capacity for global modeling owing to its inherent global self-attention mechanism. The TransUnet model leverages the strengths of both the convolutional neural network (CNN) and transformer models through a hybrid CNN-transformer encoder. However, the concatenation of high- and low-level features in the decoder is ineffective in fusing global and local information. To overcome this limitation, we propose an innovative transformer-based medical image segmentation architecture called BiFTransNet, which introduces a BiFusion module into the decoder stage, enabling effective global and local feature fusion by enabling feature integration from various modules. Further, a multilevel loss (ML) strategy is introduced to oversee the learning process of each decoder layer and optimize the use of globally and locally fused contextual features at different scales. Our method achieved a Dice score of 89.51% and an intersection-over-union (IoU) score of 86.54% on the UW-Madison Gastrointestinal Segmentation dataset. Moreover, our method attained a Dice score of 78.77% and a Hausdorff distance (HD) of 27.94% on the Synapse Multi-organ Segmentation dataset. Compared with the state-of-the-art methods, our proposed method achieves superior segmentation performance in gastrointestinal segmentation tasks. More significantly, our method can be easily extended to medical segmentation in different modalities such as CT and MRI. Our method achieves clinical multimodal medical segmentation and provides decision supports for clinical radiotherapy plans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二三完成签到,获得积分10
1秒前
过河卒子完成签到,获得积分10
2秒前
5秒前
5秒前
风中刺猬完成签到,获得积分10
9秒前
12秒前
12秒前
Prozac完成签到,获得积分10
14秒前
单薄天蓉应助清爽冰露采纳,获得10
14秒前
RP-H发布了新的文献求助10
14秒前
8y24dp发布了新的文献求助10
16秒前
19秒前
权千万发布了新的文献求助10
19秒前
你好麻烦哦完成签到,获得积分10
21秒前
Arloong完成签到,获得积分10
21秒前
21秒前
Akim应助8y24dp采纳,获得10
23秒前
孙抡完成签到,获得积分10
24秒前
害羞行云完成签到,获得积分20
27秒前
27秒前
28秒前
SSSSscoliosis完成签到,获得积分10
28秒前
SDNUDRUG完成签到,获得积分10
29秒前
清爽冰露发布了新的文献求助10
30秒前
害羞行云发布了新的文献求助30
30秒前
31秒前
长情访梦完成签到,获得积分10
31秒前
科研通AI2S应助梓然采纳,获得10
32秒前
二三发布了新的文献求助10
32秒前
科研通AI2S应助winnie采纳,获得30
32秒前
星辰大海应助权千万采纳,获得10
33秒前
WTC发布了新的文献求助200
34秒前
帅玉玉发布了新的文献求助10
35秒前
给我好好读书完成签到,获得积分10
39秒前
苹果蛋完成签到,获得积分10
39秒前
慕青应助幸福的冰珍采纳,获得10
40秒前
李健的小迷弟应助hxldsb采纳,获得10
41秒前
42秒前
linktheboy完成签到,获得积分10
43秒前
小二郎应助安安安采纳,获得10
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292218
求助须知:如何正确求助?哪些是违规求助? 2928591
关于积分的说明 8437621
捐赠科研通 2600628
什么是DOI,文献DOI怎么找? 1419174
科研通“疑难数据库(出版商)”最低求助积分说明 660243
邀请新用户注册赠送积分活动 642886