A Collaborative Control Scheme for Smart Vehicles Based on Multi-Agent Deep Reinforcement Learning

强化学习 计算机科学 智能交通系统 调度(生产过程) 方案(数学) 人工神经网络 流量(计算机网络) 人工智能 智能控制 控制工程 实时计算 工程类 计算机网络 数学分析 运营管理 土木工程 数学
作者
Liyan Shi,Hairui Chen
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 96221-96234 被引量:3
标识
DOI:10.1109/access.2023.3312021
摘要

With the development of artificial intelligence and autonomous driving technology, the vehicle-road cooperative control system combined with artificial intelligence technology can provide more effective and adaptive traffic control solutions for intelligent transportation systems. Existing research works are confronted with two kinds of challenges. For one thing, traditional recurrent neural networks-based methods cannot model the long-time dependent information in traffic flow sequences. For another, the large sample correlation makes it difficult to optimize the trained strategies. In this paper, we propose a Multi-agent Deep Reinforcement Learning (MADRL)-based intelligent vehicle cooperative control method to deal remedy current gaps. To this end, a closed-loop control system of self-driving vehicles and signal controllers is used as the research object to achieve dynamic scheduling of traffic flow by MADRL. After designing relevant experimental validation, the feasibility of the method is verified in terms of both scheme comparison and operational effect analysis, which is a good aid to traffic signal timing. The simulation results show that the proposal can be well utilized to realize collaborative control of smart vehicles, and there is some performance improvement compared with several typical methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HangZ完成签到,获得积分10
2秒前
咯噔发布了新的文献求助10
4秒前
4秒前
HangZ发布了新的文献求助10
5秒前
lin应助含蓄凡柔采纳,获得10
5秒前
情怀应助俭朴的一曲采纳,获得10
6秒前
6秒前
8秒前
隐形曼青应助咯噔采纳,获得10
9秒前
俏皮芹发布了新的文献求助10
9秒前
深情海亦发布了新的文献求助30
10秒前
10秒前
11秒前
打打应助zbz12138采纳,获得10
14秒前
monned完成签到,获得积分10
14秒前
崩溃发布了新的文献求助10
15秒前
柏如柏发布了新的文献求助10
16秒前
16秒前
科研小白发布了新的文献求助10
16秒前
17秒前
无花果应助key采纳,获得10
17秒前
赫如冰发布了新的文献求助10
19秒前
甜蜜雅彤应助随波逐流采纳,获得10
21秒前
南风发布了新的文献求助10
23秒前
Manzia完成签到,获得积分10
27秒前
深情海亦完成签到,获得积分10
28秒前
29秒前
pyhua完成签到,获得积分10
29秒前
30秒前
31秒前
上官若男应助hay采纳,获得10
32秒前
33秒前
34秒前
key发布了新的文献求助10
34秒前
36秒前
36秒前
36秒前
寻雪完成签到,获得积分20
37秒前
乖巧的菜猪完成签到,获得积分10
37秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194