亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma

计算机科学 联营 人工智能 邻接矩阵 肾细胞癌 模式识别(心理学) 图形 变压器 机器学习 数据挖掘 理论计算机科学 病理 医学 物理 电压 量子力学
作者
Xinhuan Sun,Wuchao Li,Bangkang Fu,Yunsong Peng,Junjie He,Lihui Wang,Tongyin Yang,Xue Meng,Jin Li,Jinjing Wang,Ping Huang,Rongpin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107789-107789 被引量:5
标识
DOI:10.1016/j.cmpb.2023.107789
摘要

The pathological diagnosis of renal cell carcinoma is crucial for treatment. Currently, the multi-instance learning method is commonly used for whole-slide image classification of renal cell carcinoma, which is mainly based on the assumption of independent identical distribution. But this is inconsistent with the need to consider the correlation between different instances in the diagnosis process. Furthermore, the problem of high resource consumption of pathology images is still urgent to be solved. Therefore, we propose a new multi-instance learning method to solve this problem.In this study, we proposed a hybrid multi-instance learning model based on the Transformer and the Graph Attention Network, called TGMIL, to achieve whole-slide image of renal cell carcinoma classification without pixel-level annotation or region of interest extraction. Our approach is divided into three steps. First, we designed a feature pyramid with the multiple low magnifications of whole-slide image named MMFP. It makes the model incorporates richer information, and reduces memory consumption as well as training time compared to the highest magnification. Second, TGMIL amalgamates the Transformer and the Graph Attention's capabilities, adeptly addressing the loss of instance contextual and spatial. Within the Graph Attention network stream, an easy and efficient approach employing max pooling and mean pooling yields the graph adjacency matrix, devoid of extra memory consumption. Finally, the outputs of two streams of TGMIL are aggregated to achieve the classification of renal cell carcinoma.On the TCGA-RCC validation set, a public dataset for renal cell carcinoma, the area under a receiver operating characteristic (ROC) curve (AUC) and accuracy of TGMIL were 0.98±0.0015,0.9191±0.0062, respectively. It showcased remarkable proficiency on the private validation set of renal cell carcinoma pathology images, attaining AUC of 0.9386±0.0162 and ACC of 0.9197±0.0124. Furthermore, on the public breast cancer whole-slide image test dataset, CAMELYON 16, our model showed good classification performance with an accuracy of 0.8792.TGMIL models the diagnostic process of pathologists and shows good classification performance on multiple datasets. Concurrently, the MMFP module efficiently diminishes resource requirements, offering a novel angle for exploring computational pathology images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddddduan完成签到 ,获得积分10
9秒前
zy完成签到 ,获得积分10
13秒前
16秒前
kdjm688完成签到,获得积分10
20秒前
充电宝应助Toey采纳,获得10
21秒前
英姑应助科研通管家采纳,获得10
32秒前
timemaster666应助xxh采纳,获得10
38秒前
wykion完成签到,获得积分10
42秒前
一个薯片完成签到,获得积分10
52秒前
1分钟前
乐乐乐乐乐乐应助maher采纳,获得30
1分钟前
潇潇雨歇完成签到,获得积分10
1分钟前
1分钟前
任元元完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Toey发布了新的文献求助10
1分钟前
Toey完成签到,获得积分10
1分钟前
1分钟前
单细胞完成签到 ,获得积分0
1分钟前
顺利山柏发布了新的文献求助10
1分钟前
1分钟前
Benjamin完成签到 ,获得积分10
1分钟前
怡然凝云发布了新的文献求助30
1分钟前
李健应助蔗蔗月月采纳,获得10
1分钟前
zhl完成签到,获得积分10
2分钟前
2分钟前
2分钟前
张腾昊发布了新的文献求助10
2分钟前
2分钟前
Eatanicecube完成签到,获得积分10
2分钟前
非洲大象完成签到,获得积分10
2分钟前
张腾昊完成签到,获得积分10
2分钟前
ganggangfu完成签到,获得积分0
2分钟前
小马甲应助222520zys采纳,获得10
2分钟前
2分钟前
顺利山柏完成签到,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
2分钟前
ganggang完成签到,获得积分0
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793548
关于积分的说明 7806846
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303455
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314