TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma

计算机科学 联营 人工智能 邻接矩阵 肾细胞癌 模式识别(心理学) 图形 变压器 机器学习 数据挖掘 理论计算机科学 病理 医学 物理 电压 量子力学
作者
Xinhuan Sun,Wuchao Li,Bangkang Fu,Yunsong Peng,Junjie He,Lihui Wang,Tongyin Yang,Xue Meng,Jin Li,Jinjing Wang,Ping Huang,Rongpin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107789-107789 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107789
摘要

The pathological diagnosis of renal cell carcinoma is crucial for treatment. Currently, the multi-instance learning method is commonly used for whole-slide image classification of renal cell carcinoma, which is mainly based on the assumption of independent identical distribution. But this is inconsistent with the need to consider the correlation between different instances in the diagnosis process. Furthermore, the problem of high resource consumption of pathology images is still urgent to be solved. Therefore, we propose a new multi-instance learning method to solve this problem.In this study, we proposed a hybrid multi-instance learning model based on the Transformer and the Graph Attention Network, called TGMIL, to achieve whole-slide image of renal cell carcinoma classification without pixel-level annotation or region of interest extraction. Our approach is divided into three steps. First, we designed a feature pyramid with the multiple low magnifications of whole-slide image named MMFP. It makes the model incorporates richer information, and reduces memory consumption as well as training time compared to the highest magnification. Second, TGMIL amalgamates the Transformer and the Graph Attention's capabilities, adeptly addressing the loss of instance contextual and spatial. Within the Graph Attention network stream, an easy and efficient approach employing max pooling and mean pooling yields the graph adjacency matrix, devoid of extra memory consumption. Finally, the outputs of two streams of TGMIL are aggregated to achieve the classification of renal cell carcinoma.On the TCGA-RCC validation set, a public dataset for renal cell carcinoma, the area under a receiver operating characteristic (ROC) curve (AUC) and accuracy of TGMIL were 0.98±0.0015,0.9191±0.0062, respectively. It showcased remarkable proficiency on the private validation set of renal cell carcinoma pathology images, attaining AUC of 0.9386±0.0162 and ACC of 0.9197±0.0124. Furthermore, on the public breast cancer whole-slide image test dataset, CAMELYON 16, our model showed good classification performance with an accuracy of 0.8792.TGMIL models the diagnostic process of pathologists and shows good classification performance on multiple datasets. Concurrently, the MMFP module efficiently diminishes resource requirements, offering a novel angle for exploring computational pathology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
大鲶应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
1秒前
6666应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
情怀应助蜡笔卖小新采纳,获得10
2秒前
趙途嘵生发布了新的文献求助10
3秒前
3秒前
3秒前
大宝宝给大宝宝的求助进行了留言
4秒前
4秒前
湫栗发布了新的文献求助10
4秒前
4秒前
熊大大大熊完成签到 ,获得积分10
4秒前
朵拉A梦完成签到,获得积分10
4秒前
gyyzj完成签到,获得积分20
4秒前
诚心初晴发布了新的文献求助20
4秒前
wangchong发布了新的文献求助10
5秒前
东郭乾完成签到 ,获得积分10
6秒前
battle王发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
7秒前
谢佳霖完成签到,获得积分10
8秒前
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750645
求助须知:如何正确求助?哪些是违规求助? 5464898
关于积分的说明 15367334
捐赠科研通 4889553
什么是DOI,文献DOI怎么找? 2629305
邀请新用户注册赠送积分活动 1577613
关于科研通互助平台的介绍 1534037