TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma

计算机科学 联营 人工智能 邻接矩阵 肾细胞癌 模式识别(心理学) 图形 变压器 机器学习 数据挖掘 理论计算机科学 病理 医学 物理 电压 量子力学
作者
Xinhuan Sun,Wuchao Li,Bangkang Fu,Yunsong Peng,Junjie He,Lihui Wang,Tongyin Yang,Xue Meng,Jin Li,Jinjing Wang,Ping Huang,Rongpin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:242: 107789-107789 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107789
摘要

The pathological diagnosis of renal cell carcinoma is crucial for treatment. Currently, the multi-instance learning method is commonly used for whole-slide image classification of renal cell carcinoma, which is mainly based on the assumption of independent identical distribution. But this is inconsistent with the need to consider the correlation between different instances in the diagnosis process. Furthermore, the problem of high resource consumption of pathology images is still urgent to be solved. Therefore, we propose a new multi-instance learning method to solve this problem.In this study, we proposed a hybrid multi-instance learning model based on the Transformer and the Graph Attention Network, called TGMIL, to achieve whole-slide image of renal cell carcinoma classification without pixel-level annotation or region of interest extraction. Our approach is divided into three steps. First, we designed a feature pyramid with the multiple low magnifications of whole-slide image named MMFP. It makes the model incorporates richer information, and reduces memory consumption as well as training time compared to the highest magnification. Second, TGMIL amalgamates the Transformer and the Graph Attention's capabilities, adeptly addressing the loss of instance contextual and spatial. Within the Graph Attention network stream, an easy and efficient approach employing max pooling and mean pooling yields the graph adjacency matrix, devoid of extra memory consumption. Finally, the outputs of two streams of TGMIL are aggregated to achieve the classification of renal cell carcinoma.On the TCGA-RCC validation set, a public dataset for renal cell carcinoma, the area under a receiver operating characteristic (ROC) curve (AUC) and accuracy of TGMIL were 0.98±0.0015,0.9191±0.0062, respectively. It showcased remarkable proficiency on the private validation set of renal cell carcinoma pathology images, attaining AUC of 0.9386±0.0162 and ACC of 0.9197±0.0124. Furthermore, on the public breast cancer whole-slide image test dataset, CAMELYON 16, our model showed good classification performance with an accuracy of 0.8792.TGMIL models the diagnostic process of pathologists and shows good classification performance on multiple datasets. Concurrently, the MMFP module efficiently diminishes resource requirements, offering a novel angle for exploring computational pathology images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细小完成签到,获得积分10
1秒前
FashionBoy应助zimo采纳,获得10
1秒前
1秒前
今后应助kid采纳,获得10
2秒前
2秒前
Brown完成签到,获得积分10
3秒前
zzz发布了新的文献求助10
3秒前
xiaoliu完成签到,获得积分10
4秒前
4秒前
5秒前
dglyl发布了新的文献求助10
5秒前
科研通AI6应助lc采纳,获得10
6秒前
7秒前
自觉的丹珍完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
崽崽发布了新的文献求助10
10秒前
无花果应助背后的广山采纳,获得10
10秒前
共享精神应助小白采纳,获得10
10秒前
10秒前
ZL完成签到,获得积分10
11秒前
淡然冬灵发布了新的文献求助10
11秒前
营长完成签到 ,获得积分10
11秒前
11秒前
11秒前
diguohu发布了新的文献求助10
12秒前
14秒前
red发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
16秒前
失眠采白完成签到,获得积分10
16秒前
Jocelyn完成签到,获得积分10
16秒前
17秒前
pkouji发布了新的文献求助10
17秒前
个性的紫菜应助彩色青亦采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858