TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma

计算机科学 联营 人工智能 邻接矩阵 肾细胞癌 模式识别(心理学) 图形 变压器 机器学习 数据挖掘 理论计算机科学 病理 医学 物理 电压 量子力学
作者
Xinhuan Sun,Wuchao Li,Bangkang Fu,Yunsong Peng,Junjie He,Lihui Wang,Tongyin Yang,Xue Meng,Jin Li,Jinjing Wang,Ping Huang,Rongpin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:242: 107789-107789 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107789
摘要

The pathological diagnosis of renal cell carcinoma is crucial for treatment. Currently, the multi-instance learning method is commonly used for whole-slide image classification of renal cell carcinoma, which is mainly based on the assumption of independent identical distribution. But this is inconsistent with the need to consider the correlation between different instances in the diagnosis process. Furthermore, the problem of high resource consumption of pathology images is still urgent to be solved. Therefore, we propose a new multi-instance learning method to solve this problem.In this study, we proposed a hybrid multi-instance learning model based on the Transformer and the Graph Attention Network, called TGMIL, to achieve whole-slide image of renal cell carcinoma classification without pixel-level annotation or region of interest extraction. Our approach is divided into three steps. First, we designed a feature pyramid with the multiple low magnifications of whole-slide image named MMFP. It makes the model incorporates richer information, and reduces memory consumption as well as training time compared to the highest magnification. Second, TGMIL amalgamates the Transformer and the Graph Attention's capabilities, adeptly addressing the loss of instance contextual and spatial. Within the Graph Attention network stream, an easy and efficient approach employing max pooling and mean pooling yields the graph adjacency matrix, devoid of extra memory consumption. Finally, the outputs of two streams of TGMIL are aggregated to achieve the classification of renal cell carcinoma.On the TCGA-RCC validation set, a public dataset for renal cell carcinoma, the area under a receiver operating characteristic (ROC) curve (AUC) and accuracy of TGMIL were 0.98±0.0015,0.9191±0.0062, respectively. It showcased remarkable proficiency on the private validation set of renal cell carcinoma pathology images, attaining AUC of 0.9386±0.0162 and ACC of 0.9197±0.0124. Furthermore, on the public breast cancer whole-slide image test dataset, CAMELYON 16, our model showed good classification performance with an accuracy of 0.8792.TGMIL models the diagnostic process of pathologists and shows good classification performance on multiple datasets. Concurrently, the MMFP module efficiently diminishes resource requirements, offering a novel angle for exploring computational pathology images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yirenli完成签到,获得积分10
1秒前
诉酒发布了新的文献求助10
1秒前
CodeCraft应助weiyu_u采纳,获得10
2秒前
kds发布了新的文献求助30
3秒前
杨静完成签到,获得积分10
4秒前
FashionBoy应助asder采纳,获得200
4秒前
lydia发布了新的文献求助10
4秒前
诉酒完成签到,获得积分10
4秒前
潇洒的早晨完成签到 ,获得积分10
5秒前
5秒前
6秒前
布莱橙完成签到,获得积分10
6秒前
7秒前
7秒前
在水一方应助kai采纳,获得10
8秒前
8秒前
科研通AI5应助pfshan采纳,获得10
9秒前
多多完成签到 ,获得积分10
9秒前
9秒前
薯条完成签到,获得积分10
9秒前
acetdw发布了新的文献求助10
10秒前
参也完成签到 ,获得积分10
10秒前
11秒前
JamesPei应助2641490618采纳,获得10
12秒前
流子完成签到,获得积分10
13秒前
14秒前
14秒前
韩明姝发布了新的文献求助10
15秒前
Shirley发布了新的文献求助20
15秒前
舒服的井发布了新的文献求助200
16秒前
orixero应助lanchong采纳,获得10
17秒前
荼蘼如雪发布了新的文献求助10
17秒前
17秒前
曹先生完成签到,获得积分10
18秒前
Felix0917发布了新的文献求助10
18秒前
王乐安完成签到,获得积分10
18秒前
18秒前
asder发布了新的文献求助200
21秒前
yees完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109426
求助须知:如何正确求助?哪些是违规求助? 4318139
关于积分的说明 13453709
捐赠科研通 4148066
什么是DOI,文献DOI怎么找? 2273021
邀请新用户注册赠送积分活动 1275171
关于科研通互助平台的介绍 1213331