TGMIL: A hybrid multi-instance learning model based on the Transformer and the Graph Attention Network for whole-slide images classification of renal cell carcinoma

计算机科学 联营 人工智能 邻接矩阵 肾细胞癌 模式识别(心理学) 图形 变压器 机器学习 数据挖掘 理论计算机科学 病理 量子力学 医学 物理 电压
作者
Xinhuan Sun,Wuchao Li,Bangkang Fu,Yunsong Peng,Junjie He,Lihui Wang,Tongyin Yang,Xue Meng,Jin Li,Jinjing Wang,Ping Huang,Rongpin Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:242: 107789-107789 被引量:8
标识
DOI:10.1016/j.cmpb.2023.107789
摘要

The pathological diagnosis of renal cell carcinoma is crucial for treatment. Currently, the multi-instance learning method is commonly used for whole-slide image classification of renal cell carcinoma, which is mainly based on the assumption of independent identical distribution. But this is inconsistent with the need to consider the correlation between different instances in the diagnosis process. Furthermore, the problem of high resource consumption of pathology images is still urgent to be solved. Therefore, we propose a new multi-instance learning method to solve this problem.In this study, we proposed a hybrid multi-instance learning model based on the Transformer and the Graph Attention Network, called TGMIL, to achieve whole-slide image of renal cell carcinoma classification without pixel-level annotation or region of interest extraction. Our approach is divided into three steps. First, we designed a feature pyramid with the multiple low magnifications of whole-slide image named MMFP. It makes the model incorporates richer information, and reduces memory consumption as well as training time compared to the highest magnification. Second, TGMIL amalgamates the Transformer and the Graph Attention's capabilities, adeptly addressing the loss of instance contextual and spatial. Within the Graph Attention network stream, an easy and efficient approach employing max pooling and mean pooling yields the graph adjacency matrix, devoid of extra memory consumption. Finally, the outputs of two streams of TGMIL are aggregated to achieve the classification of renal cell carcinoma.On the TCGA-RCC validation set, a public dataset for renal cell carcinoma, the area under a receiver operating characteristic (ROC) curve (AUC) and accuracy of TGMIL were 0.98±0.0015,0.9191±0.0062, respectively. It showcased remarkable proficiency on the private validation set of renal cell carcinoma pathology images, attaining AUC of 0.9386±0.0162 and ACC of 0.9197±0.0124. Furthermore, on the public breast cancer whole-slide image test dataset, CAMELYON 16, our model showed good classification performance with an accuracy of 0.8792.TGMIL models the diagnostic process of pathologists and shows good classification performance on multiple datasets. Concurrently, the MMFP module efficiently diminishes resource requirements, offering a novel angle for exploring computational pathology images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰冰发布了新的文献求助10
刚刚
2秒前
狗不理发布了新的文献求助10
2秒前
帅仁123完成签到,获得积分20
2秒前
晴晴完成签到,获得积分10
3秒前
书生完成签到,获得积分10
3秒前
在水一方应助星星采纳,获得10
3秒前
3秒前
Rachel完成签到,获得积分20
4秒前
SHIROKO完成签到,获得积分10
4秒前
nns完成签到,获得积分10
4秒前
派大星发布了新的文献求助10
5秒前
兜兜窦完成签到,获得积分10
5秒前
seven发布了新的文献求助10
5秒前
danny发布了新的文献求助10
6秒前
6秒前
深情安青应助贪玩的听荷采纳,获得10
7秒前
文艺的又亦完成签到,获得积分10
7秒前
黄黄完成签到,获得积分0
7秒前
顺利紫山发布了新的文献求助10
8秒前
西红柿完成签到,获得积分0
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
8秒前
帕尼灬尼发布了新的文献求助10
8秒前
大力老木发布了新的文献求助10
8秒前
9秒前
9秒前
lkjh驳回了佳佳应助
9秒前
10秒前
10秒前
愉快绿蓉关注了科研通微信公众号
10秒前
10秒前
10秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635