A Review of the Applications of Explainable Machine Learning for Lithium–Ion Batteries: From Production to State and Performance Estimation

计算机科学 XML 电池(电) 过程(计算) 系统工程 生产(经济) 工程类 万维网 功率(物理) 物理 量子力学 经济 宏观经济学 操作系统
作者
Mona Faraji Niri,Koorosh Aslansefat,Sajedeh Haghi,Mojgan Hashemian,Rüdiger Daub,James Marco
出处
期刊:Energies [MDPI AG]
卷期号:16 (17): 6360-6360 被引量:4
标识
DOI:10.3390/en16176360
摘要

Lithium–ion batteries play a crucial role in clean transportation systems including EVs, aircraft, and electric micromobilities. The design of battery cells and their production process are as important as their characterisation, monitoring, and control techniques for improved energy delivery and sustainability of the industry. In recent decades, the data-driven approaches for addressing all mentioned aspects have developed massively with promising outcomes, especially through artificial intelligence and machine learning. This paper addresses the latest developments in explainable machine learning known as XML and its application to lithium–ion batteries. It includes a critical review of the XML in the manufacturing and production phase, and then later, when the battery is in use, for its state estimation and control. The former focuses on the XML for optimising the battery structure, characteristics, and manufacturing processes, while the latter considers the monitoring aspect related to the states of health, charge, and energy. This paper, through a comprehensive review of theoretical aspects of available techniques and discussing various case studies, is an attempt to inform the stack-holders of the area about the state-of-the-art XML methods and encourage those to move from the ML to XML in transition to a NetZero future. This work has also highlighted the research gaps and potential future research directions for the battery community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tough_cookie完成签到 ,获得积分10
刚刚
Zhang发布了新的文献求助10
1秒前
Owen应助心仔采纳,获得10
1秒前
粗心小熊猫完成签到,获得积分10
1秒前
2秒前
研究牲完成签到,获得积分10
2秒前
thchiang完成签到 ,获得积分10
2秒前
人间忽晚完成签到,获得积分10
3秒前
方赫然应助PGlshuai789采纳,获得10
3秒前
栀盎完成签到 ,获得积分10
3秒前
潘榆完成签到,获得积分10
3秒前
DRX发布了新的文献求助10
3秒前
4秒前
初遇之时最暖完成签到,获得积分10
5秒前
5秒前
小蘑菇应助sunrase采纳,获得10
5秒前
5秒前
6秒前
aniannn完成签到,获得积分10
6秒前
宋锦发布了新的文献求助30
6秒前
微弱de胖头完成签到,获得积分20
6秒前
6秒前
550关闭了550文献求助
7秒前
英姑应助小奶球采纳,获得10
7秒前
林家小弟发布了新的文献求助10
7秒前
周女士完成签到,获得积分10
8秒前
菠萝吹雪发布了新的文献求助10
8秒前
8秒前
多发文章完成签到,获得积分10
8秒前
9秒前
9秒前
xxqaq发布了新的文献求助10
9秒前
Joe发布了新的文献求助10
9秒前
wwt完成签到,获得积分20
9秒前
9秒前
Bioflying完成签到,获得积分10
10秒前
mhl11应助jue123采纳,获得10
10秒前
10秒前
猪猪完成签到 ,获得积分10
10秒前
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397