Zero-Shot Medical Image Translation via Frequency-Guided Diffusion Models

计算机科学 人工智能 稳健性(进化) 翻译(生物学) 计算机视觉 图像翻译 频域 医学影像学 图像质量 图像配准 扩散过程 扩散 生成模型 噪音(视频) 图像(数学) 模式识别(心理学) 算法 生成语法 基因 信使核糖核酸 物理 热力学 知识管理 生物化学 化学 创新扩散
作者
Yunxiang Li,Hua‐Chieh Shao,Xiao Liang,Liyuan Chen,Ruiqi Li,Steve Jiang,Jing Wang,You Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 980-993 被引量:15
标识
DOI:10.1109/tmi.2023.3325703
摘要

Recently, the diffusion model has emerged as a superior generative model that can produce high quality and realistic images. However, for medical image translation, the existing diffusion models are deficient in accurately retaining structural information since the structure details of source domain images are lost during the forward diffusion process and cannot be fully recovered through learned reverse diffusion, while the integrity of anatomical structures is extremely important in medical images. For instance, errors in image translation may distort, shift, or even remove structures and tumors, leading to incorrect diagnosis and inadequate treatments. Training and conditioning diffusion models using paired source and target images with matching anatomy can help. However, such paired data are very difficult and costly to obtain, and may also reduce the robustness of the developed model to out-of-distribution testing data. We propose a frequency-guided diffusion model (FGDM) that employs frequency-domain filters to guide the diffusion model for structure-preserving image translation. Based on its design, FGDM allows zero-shot learning, as it can be trained solely on the data from the target domain, and used directly for source-to-target domain translation without any exposure to the source-domain data during training. We evaluated it on three cone-beam CT (CBCT)-to-CT translation tasks for different anatomical sites, and a cross-institutional MR imaging translation task. FGDM outperformed the state-of-the-art methods (GAN-based, VAE-based, and diffusion-based) in metrics of Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM), showing its significant advantages in zero-shot medical image translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Clown发布了新的文献求助10
1秒前
GLORIA完成签到 ,获得积分10
1秒前
1秒前
芳芳子呀完成签到,获得积分10
1秒前
牛牛发布了新的文献求助10
2秒前
昨夜書发布了新的文献求助10
3秒前
111完成签到,获得积分10
3秒前
sx关闭了sx文献求助
3秒前
整齐芷文完成签到,获得积分10
4秒前
yellow完成签到,获得积分10
4秒前
小王完成签到 ,获得积分10
5秒前
jiying131发布了新的文献求助10
5秒前
luogan完成签到,获得积分10
5秒前
5秒前
何佳完成签到,获得积分10
6秒前
L1完成签到 ,获得积分10
7秒前
科研通AI5应助毛毛采纳,获得10
7秒前
7秒前
YBOH发布了新的文献求助10
7秒前
8秒前
8秒前
奋斗的珍发布了新的文献求助20
9秒前
粗犷的抽屉完成签到,获得积分10
9秒前
lllldjhdy完成签到 ,获得积分10
9秒前
爆米花应助ayayaya采纳,获得10
9秒前
笑羽完成签到,获得积分0
9秒前
10秒前
逃亡的小狗完成签到,获得积分10
10秒前
10秒前
zyx完成签到 ,获得积分10
10秒前
一次性过发布了新的文献求助10
10秒前
乐乐应助zly采纳,获得10
10秒前
11秒前
11秒前
宴之敖者完成签到,获得积分10
11秒前
轻风发布了新的文献求助10
11秒前
11秒前
归尘应助yuaasusanaann采纳,获得10
11秒前
小马甲应助七柒采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650