重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Zero-Shot Medical Image Translation via Frequency-Guided Diffusion Models

计算机科学 人工智能 稳健性(进化) 翻译(生物学) 计算机视觉 图像翻译 频域 医学影像学 图像质量 图像配准 扩散过程 扩散 生成模型 噪音(视频) 图像(数学) 模式识别(心理学) 算法 生成语法 化学 信使核糖核酸 基因 生物化学 知识管理 物理 热力学 创新扩散
作者
Yunxiang Li,Hua‐Chieh Shao,Xiao Liang,Liyuan Chen,Ruiqi Li,Steve Jiang,Jing Wang,You Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 980-993 被引量:57
标识
DOI:10.1109/tmi.2023.3325703
摘要

Recently, the diffusion model has emerged as a superior generative model that can produce high quality and realistic images. However, for medical image translation, the existing diffusion models are deficient in accurately retaining structural information since the structure details of source domain images are lost during the forward diffusion process and cannot be fully recovered through learned reverse diffusion, while the integrity of anatomical structures is extremely important in medical images. For instance, errors in image translation may distort, shift, or even remove structures and tumors, leading to incorrect diagnosis and inadequate treatments. Training and conditioning diffusion models using paired source and target images with matching anatomy can help. However, such paired data are very difficult and costly to obtain, and may also reduce the robustness of the developed model to out-of-distribution testing data. We propose a frequency-guided diffusion model (FGDM) that employs frequency-domain filters to guide the diffusion model for structure-preserving image translation. Based on its design, FGDM allows zero-shot learning, as it can be trained solely on the data from the target domain, and used directly for source-to-target domain translation without any exposure to the source-domain data during training. We evaluated it on three cone-beam CT (CBCT)-to-CT translation tasks for different anatomical sites, and a cross-institutional MR imaging translation task. FGDM outperformed the state-of-the-art methods (GAN-based, VAE-based, and diffusion-based) in metrics of Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM), showing its significant advantages in zero-shot medical image translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jz完成签到,获得积分10
1秒前
1秒前
DFX发布了新的文献求助10
1秒前
风趣盼海发布了新的文献求助10
1秒前
coco发布了新的文献求助10
1秒前
大兵哥发布了新的文献求助10
1秒前
Akim应助蟲先生采纳,获得10
2秒前
拼搏雨兰完成签到,获得积分10
3秒前
3秒前
3秒前
姜露萍完成签到,获得积分10
3秒前
薯薯完成签到,获得积分10
3秒前
Lunar611发布了新的文献求助10
4秒前
Wefaily应助Jodie采纳,获得10
4秒前
611牛马完成签到 ,获得积分10
4秒前
4秒前
机密塔发布了新的文献求助10
5秒前
可爱感发布了新的文献求助10
5秒前
5秒前
美好眼神完成签到,获得积分10
6秒前
6秒前
田舒荔发布了新的文献求助10
7秒前
Lucas应助小周小周采纳,获得10
7秒前
科研通AI2S应助zhj采纳,获得10
7秒前
完美世界应助禾研采纳,获得10
7秒前
wei发布了新的文献求助10
7秒前
伶俐草丛完成签到,获得积分10
7秒前
7秒前
RY完成签到,获得积分10
9秒前
科研通AI6应助欣喜灵槐采纳,获得10
9秒前
10秒前
10秒前
10秒前
阔达猫咪发布了新的文献求助10
10秒前
mysticzz发布了新的文献求助10
10秒前
阿茗完成签到 ,获得积分10
10秒前
10秒前
11秒前
11秒前
9999发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467049
求助须知:如何正确求助?哪些是违规求助? 4570696
关于积分的说明 14326942
捐赠科研通 4497263
什么是DOI,文献DOI怎么找? 2463804
邀请新用户注册赠送积分活动 1452757
关于科研通互助平台的介绍 1427612