Zero-Shot Medical Image Translation via Frequency-Guided Diffusion Models

计算机科学 人工智能 稳健性(进化) 翻译(生物学) 计算机视觉 图像翻译 频域 医学影像学 图像质量 图像配准 扩散过程 扩散 生成模型 噪音(视频) 图像(数学) 模式识别(心理学) 算法 生成语法 基因 信使核糖核酸 物理 热力学 知识管理 生物化学 化学 创新扩散
作者
Yunxiang Li,Hua‐Chieh Shao,Xiao Liang,Liyuan Chen,Ruiqi Li,Steve Jiang,Jing Wang,You Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (3): 980-993 被引量:57
标识
DOI:10.1109/tmi.2023.3325703
摘要

Recently, the diffusion model has emerged as a superior generative model that can produce high quality and realistic images. However, for medical image translation, the existing diffusion models are deficient in accurately retaining structural information since the structure details of source domain images are lost during the forward diffusion process and cannot be fully recovered through learned reverse diffusion, while the integrity of anatomical structures is extremely important in medical images. For instance, errors in image translation may distort, shift, or even remove structures and tumors, leading to incorrect diagnosis and inadequate treatments. Training and conditioning diffusion models using paired source and target images with matching anatomy can help. However, such paired data are very difficult and costly to obtain, and may also reduce the robustness of the developed model to out-of-distribution testing data. We propose a frequency-guided diffusion model (FGDM) that employs frequency-domain filters to guide the diffusion model for structure-preserving image translation. Based on its design, FGDM allows zero-shot learning, as it can be trained solely on the data from the target domain, and used directly for source-to-target domain translation without any exposure to the source-domain data during training. We evaluated it on three cone-beam CT (CBCT)-to-CT translation tasks for different anatomical sites, and a cross-institutional MR imaging translation task. FGDM outperformed the state-of-the-art methods (GAN-based, VAE-based, and diffusion-based) in metrics of Fréchet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM), showing its significant advantages in zero-shot medical image translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
棋士发布了新的文献求助30
刚刚
田様应助一颗星采纳,获得10
1秒前
Index发布了新的文献求助10
2秒前
刘雪晴完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
4秒前
卡他发布了新的文献求助10
5秒前
雨乐发布了新的文献求助10
7秒前
suntee发布了新的文献求助10
7秒前
9秒前
33333完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
KKKK发布了新的文献求助10
10秒前
11秒前
木易木土完成签到,获得积分10
12秒前
12秒前
天天快乐应助Fan采纳,获得10
12秒前
yu关闭了yu文献求助
13秒前
Jasper应助ychen采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
酷波er应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
十月完成签到,获得积分10
17秒前
能干巨人应助科研通管家采纳,获得10
17秒前
aaa完成签到,获得积分10
17秒前
李健应助科研通管家采纳,获得10
17秒前
17秒前
pluto应助科研通管家采纳,获得10
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
Orange应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711738
求助须知:如何正确求助?哪些是违规求助? 5205626
关于积分的说明 15265191
捐赠科研通 4863974
什么是DOI,文献DOI怎么找? 2611057
邀请新用户注册赠送积分活动 1561379
关于科研通互助平台的介绍 1518704