ChatGPT on guidelines: Providing contextual knowledge to GPT allows it to provide advice on appropriate colonoscopy intervals

结肠镜检查 医学 幻觉 知识库 梅德林 医学物理学 结直肠癌 计算机科学 人工智能 癌症 内科学 政治学 法学
作者
Daniel Yan Zheng Lim,Yu Bin Tan,Jonathan Tian En Koh,Joshua Yi Min Tung,Gerald Gui Ren Sng,Damien Tan,Chee‐Kiat Tan
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:39 (1): 81-106 被引量:14
标识
DOI:10.1111/jgh.16375
摘要

Abstract Background and Aim Colonoscopy is commonly used in screening and surveillance for colorectal cancer. Multiple different guidelines provide recommendations on the interval between colonoscopies. This can be challenging for non‐specialist healthcare providers to navigate. Large language models like ChatGPT are a potential tool for parsing patient histories and providing advice. However, the standard GPT model is not designed for medical use and can hallucinate. One way to overcome these challenges is to provide contextual information with medical guidelines to help the model respond accurately to queries. Our study compares the standard GPT4 against a contextualized model provided with relevant screening guidelines. We evaluated whether the models could provide correct advice for screening and surveillance intervals for colonoscopy. Methods Relevant guidelines pertaining to colorectal cancer screening and surveillance were formulated into a knowledge base for GPT. We tested 62 example case scenarios (three times each) on standard GPT4 and on a contextualized model with the knowledge base. Results The contextualized GPT4 model outperformed the standard GPT4 in all domains. No high‐risk features were missed, and only two cases had hallucination of additional high‐risk features. A correct interval to colonoscopy was provided in the majority of cases. Guidelines were appropriately cited in almost all cases. Conclusions A contextualized GPT4 model could identify high‐risk features and quote appropriate guidelines without significant hallucination. It gave a correct interval to the next colonoscopy in the majority of cases. This provides proof of concept that ChatGPT with appropriate refinement can serve as an accurate physician assistant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jia发布了新的文献求助10
刚刚
英姑应助小叶子采纳,获得10
1秒前
知度完成签到,获得积分10
1秒前
芳华如梦发布了新的文献求助30
2秒前
科目三应助cc采纳,获得10
2秒前
heartsooo完成签到,获得积分10
3秒前
3秒前
JamesPei应助Sue采纳,获得10
3秒前
香蕉觅云应助潇潇采纳,获得10
4秒前
LuoYR@SZU发布了新的文献求助10
4秒前
4秒前
koko完成签到,获得积分10
4秒前
鲜艳的沛春完成签到,获得积分10
5秒前
cocopepsi完成签到,获得积分10
6秒前
6秒前
我是老大应助Jia采纳,获得10
7秒前
10秒前
bkagyin应助heartsooo采纳,获得10
10秒前
搜集达人应助孤独靖柏采纳,获得10
10秒前
10秒前
11秒前
李爱国应助健康的幻珊采纳,获得30
12秒前
12秒前
asss发布了新的文献求助10
13秒前
schyoung发布了新的文献求助10
14秒前
小叶子发布了新的文献求助10
14秒前
科研通AI2S应助科研狗采纳,获得10
14秒前
明理寄云完成签到,获得积分20
15秒前
16秒前
16秒前
17秒前
SKZ发布了新的文献求助10
17秒前
lyl19880908发布了新的文献求助100
18秒前
18秒前
wxt发布了新的文献求助10
18秒前
YL完成签到,获得积分20
19秒前
李健的粉丝团团长应助asss采纳,获得10
19秒前
孤独靖柏完成签到,获得积分10
19秒前
20秒前
呦呦完成签到 ,获得积分10
20秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129146
求助须知:如何正确求助?哪些是违规求助? 2779966
关于积分的说明 7745595
捐赠科研通 2435160
什么是DOI,文献DOI怎么找? 1293933
科研通“疑难数据库(出版商)”最低求助积分说明 623474
版权声明 600542