复式(建筑)
DNA测序
模板
突变
突变频率
计算生物学
深度测序
生物
计算机科学
遗传学
DNA
算法
基因
基因组
程序设计语言
作者
Guiying Wu,Mengmeng Song,Ke Wang,Tianyu Cui,Zicong Jiao,Liyan Ji,Xuan Gao,Jiayin Wang,Tao Liu,Xuefeng Xia,Huan Fang,Yanfang Guan,Xin Yi
摘要
Abstract Duplex sequencing technology has been widely used in the detection of low-frequency mutations in circulating tumor deoxyribonucleic acid (DNA), but how to determine the sequencing depth and other experimental parameters to ensure the stable detection of low-frequency mutations is still an urgent problem to be solved. The mutation detection rules of duplex sequencing constrain not only the number of mutated templates but also the number of mutation-supportive reads corresponding to each forward and reverse strand of the mutated templates. To tackle this problem, we proposed a Depth Estimation model for stable detection of Low-Frequency MUTations in duplex sequencing (DELFMUT), which models the identity correspondence and quantitative relationships between templates and reads using the zero-truncated negative binomial distribution without considering the sequences composed of bases. The results of DELFMUT were verified by real duplex sequencing data. In the case of known mutation frequency and mutation detection rule, DELFMUT can recommend the combinations of DNA input and sequencing depth to guarantee the stable detection of mutations, and it has a great application value in guiding the experimental parameter setting of duplex sequencing technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI