亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AERNet: An Attention-Guided Edge Refinement Network and a Dataset for Remote Sensing Building Change Detection

计算机科学 变更检测 遥感 GSM演进的增强数据速率 人工智能 地质学
作者
Jindou Zhang,Zhenfeng Shao,Qing Ding,Xiao Huang,Yu Wang,Xuechao Zhou,Deren Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:37
标识
DOI:10.1109/tgrs.2023.3300533
摘要

Advancements in Earth observation technology enable the detection of surface changes in intricate urban environments. Building change detection (BCD) plays a crucial role in urban planning and environmental monitoring. However, existing deep learning-based BCD algorithms exhibit limited capability in feature extraction, feature relationship comprehension, sample imbalance mitigation, and accurate boundary identification for changed objects. To address these challenges, we introduce an attention-guided edge refinement network (AERNet) that employs a global context feature aggregation module (GCFAM) to aggregate information from extracted multi-layer context features. Our approach incorporates an attention decoding block (ADB) guided by enhanced coordinate attention (ECA) to capture channel and location associations between features. Furthermore, we utilize an edge refinement module (ERM) to enhance the network's capacity to sense and refine the edges of changed areas. To tackle the issue of class imbalance and augment the algorithm's feature learning ability, we devise a novel self-adaptive weighted binary cross-entropy (SWBCE) loss function, combined with a deep supervision (DS) strategy. Experiments are conducted on two publicly available datasets, GDSCD and LEVIR-CD, as well as our newly developed high-resolution complex urban scene BCD dataset, i.e., HRCUS-CD. The latter dataset comprises 11,388 pairs of images at 0.5-meter resolution and over 12,000 labeled change buildings. Comparative experiments indicate that AERNet surpasses advanced competitive methods, while ablation experiments demonstrate the effectiveness of AERNet's model components and the SWBCE loss function. Efficiency comparison confirms that AERNet achieves comprehensive detection performance with superior effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
8秒前
9秒前
哈比人linling完成签到,获得积分10
14秒前
新1发布了新的文献求助10
14秒前
木易发布了新的文献求助10
15秒前
裂头蚴应助何事惊慌采纳,获得10
17秒前
qi完成签到,获得积分20
22秒前
27秒前
青苹果qq完成签到 ,获得积分10
27秒前
呼延水云发布了新的文献求助10
32秒前
123完成签到,获得积分10
33秒前
36秒前
123发布了新的文献求助10
45秒前
51秒前
爆米花应助Lemon_ice采纳,获得10
54秒前
卡皮巴拉发布了新的文献求助30
56秒前
1分钟前
yzy完成签到 ,获得积分10
1分钟前
1分钟前
Akim应助huenguyenvan采纳,获得10
1分钟前
1分钟前
阿治完成签到 ,获得积分10
1分钟前
1分钟前
归期完成签到,获得积分10
1分钟前
小马甲应助今夜无人入眠采纳,获得10
1分钟前
Akim应助star采纳,获得20
1分钟前
1分钟前
优雅夕阳完成签到 ,获得积分0
1分钟前
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
eric888完成签到,获得积分0
1分钟前
star完成签到,获得积分20
1分钟前
1分钟前
思源应助Yuan_n采纳,获得10
1分钟前
能干的雨完成签到 ,获得积分10
1分钟前
star发布了新的文献求助20
1分钟前
2分钟前
科研通AI6应助卡皮巴拉采纳,获得10
2分钟前
彭于晏应助可乐采纳,获得10
2分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137025
求助须知:如何正确求助?哪些是违规求助? 4336991
关于积分的说明 13510921
捐赠科研通 4175381
什么是DOI,文献DOI怎么找? 2289390
邀请新用户注册赠送积分活动 1289960
关于科研通互助平台的介绍 1231411