清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AERNet: An Attention-Guided Edge Refinement Network and a Dataset for Remote Sensing Building Change Detection

计算机科学 变更检测 遥感 GSM演进的增强数据速率 人工智能 地质学
作者
Jindou Zhang,Zhenfeng Shao,Qing Ding,Xiao Huang,Yu Wang,Xuechao Zhou,Deren Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:37
标识
DOI:10.1109/tgrs.2023.3300533
摘要

Advancements in Earth observation technology enable the detection of surface changes in intricate urban environments. Building change detection (BCD) plays a crucial role in urban planning and environmental monitoring. However, existing deep learning-based BCD algorithms exhibit limited capability in feature extraction, feature relationship comprehension, sample imbalance mitigation, and accurate boundary identification for changed objects. To address these challenges, we introduce an attention-guided edge refinement network (AERNet) that employs a global context feature aggregation module (GCFAM) to aggregate information from extracted multi-layer context features. Our approach incorporates an attention decoding block (ADB) guided by enhanced coordinate attention (ECA) to capture channel and location associations between features. Furthermore, we utilize an edge refinement module (ERM) to enhance the network's capacity to sense and refine the edges of changed areas. To tackle the issue of class imbalance and augment the algorithm's feature learning ability, we devise a novel self-adaptive weighted binary cross-entropy (SWBCE) loss function, combined with a deep supervision (DS) strategy. Experiments are conducted on two publicly available datasets, GDSCD and LEVIR-CD, as well as our newly developed high-resolution complex urban scene BCD dataset, i.e., HRCUS-CD. The latter dataset comprises 11,388 pairs of images at 0.5-meter resolution and over 12,000 labeled change buildings. Comparative experiments indicate that AERNet surpasses advanced competitive methods, while ablation experiments demonstrate the effectiveness of AERNet's model components and the SWBCE loss function. Efficiency comparison confirms that AERNet achieves comprehensive detection performance with superior effectiveness and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZZzz完成签到 ,获得积分10
14秒前
俊逸吐司完成签到 ,获得积分10
25秒前
zhdjj完成签到 ,获得积分10
26秒前
啦啦鱼完成签到 ,获得积分10
33秒前
42秒前
乐观无心应助科研通管家采纳,获得10
44秒前
活力青筠完成签到,获得积分10
49秒前
柒八染完成签到 ,获得积分10
52秒前
活力青筠发布了新的文献求助10
53秒前
1分钟前
1分钟前
SSSSS发布了新的文献求助10
1分钟前
酷炫的一笑完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SSSSS完成签到,获得积分10
1分钟前
紫荆完成签到,获得积分10
1分钟前
汉堡包应助Dz1990m采纳,获得10
1分钟前
haralee完成签到 ,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
1分钟前
Dz1990m发布了新的文献求助10
1分钟前
jlwang完成签到,获得积分10
1分钟前
草木完成签到 ,获得积分10
1分钟前
HY完成签到 ,获得积分10
1分钟前
科研通AI2S应助紫荆采纳,获得30
1分钟前
mickaqi完成签到 ,获得积分10
2分钟前
NexusExplorer应助酷炫的一笑采纳,获得10
2分钟前
Silence完成签到 ,获得积分10
2分钟前
vampire完成签到,获得积分10
2分钟前
2分钟前
2分钟前
eth完成签到 ,获得积分10
2分钟前
creep2020完成签到,获得积分10
2分钟前
2分钟前
2分钟前
乔杰完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
独孤完成签到 ,获得积分10
3分钟前
3分钟前
我独舞完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292