iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:12
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助眼睛大行云采纳,获得10
刚刚
1秒前
xue完成签到 ,获得积分10
1秒前
健忘丹珍完成签到,获得积分10
1秒前
1秒前
1秒前
坤坤蹦蹦跳跳完成签到,获得积分10
3秒前
害羞映容完成签到,获得积分10
3秒前
科研通AI6应助小亮哈哈采纳,获得10
3秒前
3秒前
3秒前
所所应助liriyii采纳,获得10
3秒前
核糖体完成签到,获得积分20
4秒前
5秒前
Lloignyth完成签到,获得积分10
5秒前
赵苏程完成签到,获得积分10
5秒前
5秒前
5秒前
乐乐应助小张醒了采纳,获得10
6秒前
半凡完成签到,获得积分10
6秒前
小小666完成签到 ,获得积分10
6秒前
幽悠梦儿发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
Elin完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
平平无奇发布了新的文献求助10
8秒前
8秒前
青年才俊发布了新的文献求助10
8秒前
beijita完成签到,获得积分10
9秒前
星辰大海应助ZhangF采纳,获得10
9秒前
斯文败类应助Kyle采纳,获得10
10秒前
核糖体发布了新的文献求助10
10秒前
帅气蓝发布了新的文献求助10
10秒前
ZG发布了新的文献求助10
10秒前
jiwoong完成签到,获得积分10
11秒前
11秒前
田20202021完成签到,获得积分10
11秒前
史铖信完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978