iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:12
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HTY发布了新的文献求助10
刚刚
Ali完成签到,获得积分10
1秒前
adxyz完成签到,获得积分10
1秒前
寻悦发布了新的文献求助10
3秒前
3秒前
5秒前
5秒前
xh发布了新的文献求助10
5秒前
牛tongxue完成签到,获得积分10
5秒前
5秒前
科研喵发布了新的文献求助10
6秒前
7秒前
寇kk完成签到,获得积分10
8秒前
灯火完成签到,获得积分10
9秒前
9秒前
9秒前
于梦寒完成签到,获得积分10
9秒前
10秒前
evvj发布了新的文献求助10
10秒前
10秒前
吃不饱发布了新的文献求助10
10秒前
11秒前
光明磊落完成签到,获得积分20
12秒前
小太阳发布了新的文献求助10
12秒前
jzh发布了新的文献求助10
13秒前
文艺过客发布了新的文献求助10
13秒前
科研通AI6应助Han采纳,获得10
14秒前
三岁应助ly浩采纳,获得10
14秒前
Feiguo_Fang完成签到,获得积分20
14秒前
14秒前
不想写发布了新的文献求助10
14秒前
15秒前
英姑应助Sun采纳,获得10
15秒前
17秒前
Amuro完成签到,获得积分10
17秒前
17秒前
19秒前
20秒前
20秒前
黄志平完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5643147
求助须知:如何正确求助?哪些是违规求助? 4760738
关于积分的说明 15020082
捐赠科研通 4801576
什么是DOI,文献DOI怎么找? 2566843
邀请新用户注册赠送积分活动 1524735
关于科研通互助平台的介绍 1484276