iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:12
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
君悦完成签到,获得积分10
1秒前
liuchengrui应助猫小猪采纳,获得10
1秒前
夏竟添完成签到,获得积分10
2秒前
zhaoyuqing完成签到,获得积分10
2秒前
2秒前
3秒前
Lv完成签到,获得积分10
3秒前
3秒前
GuMingyang发布了新的文献求助10
4秒前
5秒前
传奇3应助年年年年采纳,获得10
6秒前
小武完成签到,获得积分10
7秒前
7秒前
LX完成签到,获得积分10
7秒前
Mangooo完成签到,获得积分10
7秒前
猫猫无敌完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
聪明帅哥发布了新的文献求助10
8秒前
skycool发布了新的文献求助10
8秒前
8秒前
回复对方完成签到,获得积分10
9秒前
9秒前
理li发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助30
9秒前
10秒前
10秒前
果称完成签到,获得积分10
10秒前
ZS驳回了Akim应助
11秒前
猫猫无敌发布了新的文献求助10
11秒前
12秒前
朴素八宝粥完成签到,获得积分10
12秒前
13秒前
完美世界应助余泽楷采纳,获得10
13秒前
苦行僧发布了新的文献求助30
14秒前
甄昕发布了新的文献求助10
14秒前
14秒前
852应助skycool采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5717982
求助须知:如何正确求助?哪些是违规求助? 5249617
关于积分的说明 15284035
捐赠科研通 4868135
什么是DOI,文献DOI怎么找? 2614009
邀请新用户注册赠送积分活动 1563957
关于科研通互助平台的介绍 1521400