亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:12
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkg发布了新的文献求助10
6秒前
39秒前
江梁发布了新的文献求助10
44秒前
大个应助贝加尔湖畔采纳,获得10
44秒前
52秒前
56秒前
SoreThrow完成签到,获得积分10
1分钟前
霡霂发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
熬夜波比应助科研通管家采纳,获得10
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
1分钟前
修辛完成签到 ,获得积分10
1分钟前
一见喜发布了新的文献求助10
2分钟前
好好好完成签到,获得积分10
2分钟前
2分钟前
Jiangtao完成签到,获得积分10
2分钟前
huyu完成签到 ,获得积分10
2分钟前
3分钟前
SoreThrow发布了新的文献求助10
3分钟前
3分钟前
Leo发布了新的文献求助10
3分钟前
活泼的路人完成签到,获得积分10
3分钟前
3分钟前
Leo完成签到,获得积分10
3分钟前
啊z应助科研通管家采纳,获得10
3分钟前
3分钟前
yhw发布了新的文献求助10
3分钟前
3分钟前
3分钟前
Lu发布了新的文献求助10
4分钟前
JamesPei应助puzhongjiMiQ采纳,获得10
5分钟前
NN应助puzhongjiMiQ采纳,获得10
5分钟前
搜集达人应助puzhongjiMiQ采纳,获得10
5分钟前
ccm应助puzhongjiMiQ采纳,获得10
5分钟前
彭于晏应助puzhongjiMiQ采纳,获得10
5分钟前
完美世界应助puzhongjiMiQ采纳,获得10
5分钟前
pluto应助puzhongjiMiQ采纳,获得10
5分钟前
ccm应助puzhongjiMiQ采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681524
求助须知:如何正确求助?哪些是违规求助? 5009593
关于积分的说明 15175775
捐赠科研通 4841036
什么是DOI,文献DOI怎么找? 2594852
邀请新用户注册赠送积分活动 1547875
关于科研通互助平台的介绍 1505880