iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:8
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hf发布了新的文献求助30
1秒前
zxvcbnm完成签到,获得积分10
1秒前
fanhuam发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
称心寒松发布了新的文献求助10
4秒前
NexusExplorer应助MHSCS采纳,获得10
4秒前
早上好完成签到,获得积分10
4秒前
阳光向秋发布了新的文献求助10
5秒前
6秒前
柠檬发布了新的文献求助10
8秒前
8秒前
慕青应助121采纳,获得10
8秒前
bbdx发布了新的文献求助10
10秒前
10秒前
12秒前
WYP完成签到 ,获得积分10
12秒前
云天明发布了新的文献求助10
12秒前
诚心的初露完成签到,获得积分10
14秒前
yyyt完成签到,获得积分10
14秒前
秤子发布了新的文献求助10
14秒前
wss关闭了wss文献求助
15秒前
脑洞疼应助叽叽卟卟采纳,获得10
15秒前
善学以致用应助Will采纳,获得10
18秒前
xiaofeiyan发布了新的文献求助10
18秒前
糖果应助wangmomo1983采纳,获得10
19秒前
彩色映雁发布了新的文献求助10
19秒前
大个应助牛牛的我采纳,获得10
21秒前
xixi完成签到,获得积分10
21秒前
zzzz发布了新的文献求助10
21秒前
zy完成签到,获得积分10
23秒前
hf完成签到,获得积分10
23秒前
24秒前
李白完成签到,获得积分10
25秒前
26秒前
张弘发布了新的文献求助10
27秒前
Dr.Tang完成签到 ,获得积分10
28秒前
小蘑菇应助hf采纳,获得10
30秒前
xin关闭了xin文献求助
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427