亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:12
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Python_Liu完成签到 ,获得积分10
1秒前
Echo完成签到,获得积分10
3秒前
Criminology34应助七宝大当家采纳,获得10
5秒前
汉堡包应助lld采纳,获得10
10秒前
AX完成签到,获得积分10
14秒前
zbx发布了新的文献求助10
17秒前
酷波er应助Sawyer采纳,获得10
17秒前
18秒前
Ava应助Neptune采纳,获得10
18秒前
花海完成签到 ,获得积分10
23秒前
26秒前
脏兮兮完成签到,获得积分10
29秒前
liuynnn发布了新的文献求助10
30秒前
嘎哈完成签到,获得积分10
30秒前
31秒前
Moon发布了新的文献求助10
32秒前
愉快的秋凌完成签到,获得积分10
34秒前
35秒前
Sawyer发布了新的文献求助10
42秒前
三年六班李子明完成签到 ,获得积分10
42秒前
zbx完成签到,获得积分10
42秒前
传奇3应助虚幻的二采纳,获得10
43秒前
46秒前
细心的雨竹完成签到,获得积分10
47秒前
Hello应助科研通管家采纳,获得10
48秒前
Tanya47应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
48秒前
Tanya47应助科研通管家采纳,获得10
48秒前
华仔应助科研通管家采纳,获得10
48秒前
Tanya47应助科研通管家采纳,获得10
48秒前
董秋白完成签到,获得积分10
50秒前
51秒前
HAo完成签到 ,获得积分10
51秒前
董秋白发布了新的文献求助20
53秒前
彭于晏应助Moon采纳,获得10
53秒前
54秒前
56秒前
美好的邴完成签到 ,获得积分10
57秒前
Sawyer发布了新的文献求助10
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664014
求助须知:如何正确求助?哪些是违规求助? 4856551
关于积分的说明 15106965
捐赠科研通 4822463
什么是DOI,文献DOI怎么找? 2581455
邀请新用户注册赠送积分活动 1535665
关于科研通互助平台的介绍 1493892