已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:12
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助原来采纳,获得10
刚刚
小胖子完成签到 ,获得积分10
2秒前
Lucky完成签到 ,获得积分10
9秒前
Linux2000Pro完成签到,获得积分0
11秒前
燕燕完成签到 ,获得积分10
16秒前
17秒前
Owen应助TTTHANKS采纳,获得10
21秒前
鬼笔环肽完成签到 ,获得积分10
25秒前
爱笑的小羽毛完成签到,获得积分10
28秒前
852应助嘭嘭嘭采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
29秒前
一八四发布了新的文献求助10
31秒前
31秒前
31秒前
34秒前
35秒前
35秒前
执着之玉发布了新的文献求助10
36秒前
Alpha完成签到 ,获得积分10
36秒前
阴森女公爵完成签到 ,获得积分10
37秒前
浮云朝露关注了科研通微信公众号
37秒前
传奇3应助zhanghao采纳,获得10
37秒前
TTTHANKS发布了新的文献求助10
38秒前
jiangchuansm完成签到,获得积分10
39秒前
absb发布了新的文献求助10
40秒前
41秒前
嘻嘻嘻完成签到,获得积分10
44秒前
mimimi发布了新的文献求助10
45秒前
一八四完成签到,获得积分10
50秒前
mimimi完成签到,获得积分10
51秒前
充电宝应助absb采纳,获得10
51秒前
Orange应助absb采纳,获得50
51秒前
丘比特应助absb采纳,获得10
51秒前
可爱的函函应助absb采纳,获得10
51秒前
CodeCraft应助absb采纳,获得10
51秒前
我是老大应助suchui采纳,获得10
52秒前
浮云朝露发布了新的文献求助10
54秒前
57秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573190
求助须知:如何正确求助?哪些是违规求助? 4659336
关于积分的说明 14724438
捐赠科研通 4599135
什么是DOI,文献DOI怎么找? 2524140
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704