iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:8
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_ZbP41L完成签到 ,获得积分10
1秒前
木勿忘完成签到,获得积分10
1秒前
山本无山完成签到 ,获得积分10
1秒前
动听安筠完成签到 ,获得积分10
1秒前
默默尔安完成签到 ,获得积分10
2秒前
zy完成签到,获得积分10
3秒前
六六完成签到,获得积分10
3秒前
念姬完成签到,获得积分10
4秒前
5秒前
yuan完成签到,获得积分10
5秒前
zzx完成签到,获得积分10
5秒前
aka完成签到,获得积分10
6秒前
dx105完成签到,获得积分10
6秒前
自信的寒天完成签到,获得积分10
6秒前
bqin完成签到,获得积分20
7秒前
7秒前
乐乐发布了新的文献求助10
9秒前
9秒前
天天哥哥完成签到 ,获得积分10
9秒前
zxp完成签到,获得积分10
10秒前
车剑锋完成签到,获得积分10
11秒前
聪明的破茧完成签到,获得积分10
11秒前
aki空中飞跃完成签到,获得积分10
11秒前
清秀成威完成签到,获得积分10
12秒前
浚稚发布了新的文献求助10
12秒前
三岁完成签到,获得积分10
12秒前
852应助bqin采纳,获得10
12秒前
我是老大应助kirirto采纳,获得10
12秒前
AnDing里发布了新的文献求助10
13秒前
陈思完成签到,获得积分10
14秒前
JINY完成签到,获得积分10
15秒前
15秒前
王慧完成签到,获得积分10
16秒前
麻麻薯完成签到 ,获得积分10
16秒前
曾经的海白完成签到,获得积分10
17秒前
謓言发布了新的文献求助10
18秒前
一个稚气的小孩完成签到,获得积分10
18秒前
小霞完成签到 ,获得积分10
18秒前
hh完成签到 ,获得积分20
19秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818793
关于积分的说明 7922334
捐赠科研通 2478522
什么是DOI,文献DOI怎么找? 1320396
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443