iPADD: A Computational Tool for Predicting Potential Antidiabetic Drugs Using Machine Learning Algorithms

机器学习 人工智能 计算机科学 算法
作者
Xiaowei Liu,Tianyu Shi,Dong Gao,Cai-Yi Ma,Hao Lin,Dan Yan,Kejun Deng
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (15): 4960-4969 被引量:12
标识
DOI:10.1021/acs.jcim.3c00564
摘要

Diabetes mellitus is a chronic metabolic disease, which causes an imbalance in blood glucose homeostasis and further leads to severe complications. With the increasing population of diabetes, there is an urgent need to develop drugs to treat diabetes. The development of artificial intelligence provides a powerful tool for accelerating the discovery of antidiabetic drugs. This work aims to establish a predictor called iPADD for discovering potential antidiabetic drugs. In the predictor, we used four kinds of molecular fingerprints and their combinations to encode the drugs and then adopted minimum-redundancy–maximum-relevance (mRMR) combined with an incremental feature selection strategy to screen optimal features. Based on the optimal feature subset, eight machine learning algorithms were applied to train models by using 5-fold cross-validation. The best model could produce an accuracy (Acc) of 0.983 with the area under the receiver operating characteristic curve (auROC) value of 0.989 on an independent test set. To further validate the performance of iPADD, we selected 65 natural products for case analysis, including 13 natural products in clinical trials as positive samples and 52 natural products as negative samples. Except for abscisic acid, our model can give correct prediction results. Molecular docking illustrated that quercetin and resveratrol stably bound with the diabetes target NR1I2. These results are consistent with the model prediction results of iPADD, indicating that the machine learning model has a strong generalization ability. The source code of iPADD is available at https://github.com/llllxw/iPADD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柒柒球完成签到,获得积分10
1秒前
Wang完成签到,获得积分10
1秒前
赖雅绿完成签到,获得积分10
2秒前
Smile:)发布了新的文献求助10
2秒前
李十一完成签到,获得积分10
3秒前
科研修沟完成签到 ,获得积分10
3秒前
4秒前
4秒前
赵雨霏完成签到 ,获得积分10
5秒前
NB完成签到,获得积分10
5秒前
meng完成签到,获得积分10
6秒前
虫虫完成签到,获得积分10
7秒前
JingP完成签到,获得积分10
8秒前
8秒前
lsl完成签到 ,获得积分10
8秒前
9秒前
zxp发布了新的文献求助10
10秒前
读书的时候完成签到,获得积分10
12秒前
crave发布了新的文献求助10
13秒前
贵贵完成签到,获得积分10
14秒前
Lz完成签到,获得积分10
15秒前
玩命的寄翠完成签到 ,获得积分10
16秒前
潘道士完成签到 ,获得积分10
17秒前
曾建完成签到 ,获得积分10
17秒前
Sonder完成签到 ,获得积分10
18秒前
夏明明完成签到,获得积分10
18秒前
eve完成签到,获得积分10
18秒前
18秒前
白蝶完成签到 ,获得积分10
19秒前
大仙完成签到,获得积分10
19秒前
随遇而安完成签到 ,获得积分10
19秒前
风趣霆完成签到,获得积分10
19秒前
19秒前
跋扈完成签到,获得积分10
20秒前
田二亩完成签到,获得积分10
20秒前
Bioflying完成签到,获得积分10
21秒前
风希完成签到,获得积分10
22秒前
拼搏的问玉完成签到,获得积分10
22秒前
沉默士萧完成签到,获得积分10
23秒前
犹豫战斗机完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008920
求助须知:如何正确求助?哪些是违规求助? 3548597
关于积分的说明 11299259
捐赠科研通 3283208
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886005
科研通“疑难数据库(出版商)”最低求助积分说明 811259