A Machine Learning Approach Using FDG PET-Based Radiomics for Prediction of Tumor Mutational Burden and Prognosis in Stage IV Colorectal Cancer

无线电技术 结直肠癌 阶段(地层学) 医学 Pet成像 肿瘤科 人工智能 癌症 内科学 正电子发射断层摄影术 计算机科学 核医学 放射科 生物 古生物学
作者
Hyunjong Lee,Seung Hwan Moon,Jung Yong Hong,Jeeyun Lee,Seung Hyup Hyun
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:15 (15): 3841-3841 被引量:5
标识
DOI:10.3390/cancers15153841
摘要

We assessed the performance of F-18 fluorodeoxyglucose positron emission tomography (FDG PET)-based radiomics for the prediction of tumor mutational burden (TMB) and prognosis using a machine learning (ML) approach in patients with stage IV colorectal cancer (CRC).Ninety-one CRC patients who underwent pretreatment FDG PET/computed tomography (CT) and palliative chemotherapy were retrospectively included. PET-based radiomics were extracted from the primary tumor on PET imaging using the software LIFEx. For feature selection, PET-based radiomics associated with TMB were selected by logistic regression analysis. The performances of seven ML algorithms to predict high TMB were compared by the area under the receiver's operating characteristic curves (AUCs) and validated by five-fold cross-validation. A PET radiomic score was calculated by averaging the z-score of each radiomic feature. The prognostic power of the PET radiomic score was assessed using Cox proportional hazards regression analysis.Ten significant radiomic features associated with TMB were selected: surface-to-volume ratio, total lesion glycolysis, tumor volume, area, compacity, complexity, entropy, correlation, coarseness, and zone size non-uniformity. The k-nearest neighbors model obtained the good performance for prediction of high TMB (AUC: 0.791, accuracy: 0.814, sensitivity: 0.619, specificity: 0.871). On multivariable Cox regression analysis, the PET radiomic score (Hazard ratio = 4.498, 95% confidential interval = 1.024-19.759; p = 0.046) was a significant independent prognostic factor for OS.This study demonstrates that PET-based radiomics are useful image biomarkers for the prediction of TMB status in stage IV CRC. PET radiomic score, which integrates significant radiomic features, has the potential to predict survival in stage IV CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
inter完成签到 ,获得积分10
2秒前
柚子蟹应助Self采纳,获得30
2秒前
文献发布了新的文献求助10
3秒前
3秒前
Zxy完成签到 ,获得积分10
3秒前
4秒前
文明8发布了新的文献求助10
4秒前
砼砼完成签到,获得积分10
4秒前
CipherSage应助茶茶采纳,获得10
5秒前
szcyxzh完成签到,获得积分10
6秒前
易二十发布了新的文献求助10
6秒前
wangzhihui完成签到,获得积分20
7秒前
shihaoran完成签到,获得积分10
8秒前
777发布了新的文献求助10
8秒前
踏实语芙完成签到,获得积分10
8秒前
10秒前
可爱的函函应助ljhtxf采纳,获得10
11秒前
友好的妙松完成签到 ,获得积分10
11秒前
jxp完成签到,获得积分10
13秒前
顾矜应助hebhm采纳,获得10
13秒前
朱zhu发布了新的文献求助10
14秒前
18秒前
易二十完成签到,获得积分20
18秒前
18秒前
21秒前
稳稳完成签到,获得积分10
21秒前
思源应助文献采纳,获得10
22秒前
思源应助朱zhu采纳,获得10
22秒前
背书强发布了新的文献求助10
23秒前
23秒前
wlnhyF发布了新的文献求助10
24秒前
大模型应助呆萌棒棒糖采纳,获得10
25秒前
27秒前
茶茶发布了新的文献求助10
27秒前
Owen应助wdb采纳,获得10
28秒前
吱吱发布了新的文献求助10
29秒前
30秒前
逸风望完成签到,获得积分10
30秒前
wdb发布了新的文献求助10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967