癌症
人口
环境化学
微粒
致癌物
毒理
芘
环境卫生
环境科学
化学
医学
生物
内科学
有机化学
作者
Yingxin Li,Zhaoyu Fan,Wenfeng Lu,Ruijun Xu,Tingting Liu,Likun Liu,Gongbo Chen,Ziquan Lv,Suli Huang,Yun Zhou,Yuewei Liu,Hong Sun
出处
期刊:Chemosphere
[Elsevier]
日期:2023-11-01
卷期号:340: 139800-139800
被引量:9
标识
DOI:10.1016/j.chemosphere.2023.139800
摘要
The association of ambient fine particulate matter (PM2.5) exposure with cancer mortality was controversial, which may ascribe to the difference in PM2.5 constituents. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic constituents in PM2.5, which are suspected to account for PM2.5-induced cancer mortality but are yet to be investigated. We aimed to assess the association between long-term exposure to PM2.5-bound PAHs and cancer mortality and estimate the attributable mortality. A difference-in-differences approach was used to investigate the causal effect of long-term exposure to PM2.5-bound PAHs on cancer mortality. We divided Jiangsu province, China into 53 spatial units and summarized the annual number of cancer deaths in each spatial unit during 2016–2020. Annual population-weighted exposure to PM2.5-bound PAHs of each spatial unit was assessed by an inverse distance weighting method. The association between PM2.5-bound PAHs exposures and cancer mortality was evaluated by controlling spatial differences, temporal trends, PM2.5 mass exposures, temperatures, and socioeconomic status. Records of 793,269 cancer deaths were identified among 84.7 million population. Each ln-unit increase of exposure to total benzo[a]pyrene equivalents (∑BaPeq), total carcinogenic PAHs (∑PAH7c), and total PAHs (∑PAHs) was significantly associated with a 3.21%, 3.48%, and 2.64% increased risk of cancer mortality, respectively; the risk increased monotonically at low-level exposures but attenuated or flattened afterward (all p for nonlinearity <0.05). Similar exposure-response associations were identified for specific PAHs except that the associations for both fluoranthene and benzo[a]anthracene were linear. We estimated that exposure to ∑BaPeq, ∑PAH7c, and ∑PAHs contributed to 5.73%, 8.73%, and 7.33% of cancer deaths, respectively. In conclusion, long-term exposure to PM2.5-bound PAHs was associated with an increased risk of cancer mortality and contributed to substantial cancer deaths. Our findings highlight the importance to prevent deaths from cancer by reducing PM2.5-bound PAHs exposures and the necessity to take into consideration specific constituents in particulate pollution management in future.
科研通智能强力驱动
Strongly Powered by AbleSci AI