已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis

医学 无线电技术 脂肪肉瘤 平滑肌肉瘤 肉瘤 队列 回顾性队列研究 放射科 分级(工程) 病理 肿瘤科 内科学 土木工程 工程类
作者
Amani Arthur,Matthew Orton,Robby Emsley,Sharon Vit,Christian Kelly‐Morland,D. Strauß,Jason Lunn,Simon Doran,Hafida Lmalem,Axelle Nzokirantevye,Saskia Litière,Sylvie Bonvalot,Rick L. Haas,Alessandro Gronchi,Dirk Van Gestel,Anne Ducassou,Chandrajit P. Raut,Pierre Méeus,Mateusz Spałek,M. Hatton
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:24 (11): 1277-1286 被引量:29
标识
DOI:10.1016/s1470-2045(23)00462-x
摘要

Summary

Background

Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma.

Methods

A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade.

Findings

170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27–89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33–77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set.

Interpretation

Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas.

Funding

Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jemma完成签到 ,获得积分10
1秒前
sci01完成签到,获得积分10
1秒前
嗯哼完成签到 ,获得积分10
1秒前
lixiniverson完成签到 ,获得积分0
1秒前
lwm不想看文献完成签到 ,获得积分10
2秒前
移动马桶完成签到 ,获得积分10
2秒前
veblem发布了新的文献求助30
2秒前
11111发布了新的文献求助10
2秒前
Yasong完成签到 ,获得积分10
3秒前
Miya完成签到 ,获得积分20
3秒前
结实的小土豆完成签到 ,获得积分10
3秒前
怡然剑成完成签到 ,获得积分10
3秒前
牛蛙丶丶完成签到,获得积分10
4秒前
理理完成签到 ,获得积分10
4秒前
Lychee完成签到 ,获得积分10
4秒前
潘啊潘完成签到 ,获得积分10
5秒前
天天天才完成签到,获得积分10
5秒前
唠叨的源智完成签到,获得积分0
5秒前
shooin完成签到,获得积分10
5秒前
6秒前
光亮静槐完成签到 ,获得积分10
6秒前
山是山三十三完成签到 ,获得积分10
8秒前
能干的雨完成签到 ,获得积分10
8秒前
8秒前
alan完成签到 ,获得积分0
9秒前
佟语雪完成签到,获得积分10
9秒前
satohoang发布了新的文献求助10
9秒前
耶耶完成签到 ,获得积分10
10秒前
10秒前
Jiang完成签到 ,获得积分10
10秒前
开朗满天完成签到,获得积分20
10秒前
lijunliang完成签到 ,获得积分10
11秒前
嗨是发布了新的文献求助10
11秒前
完美天蓝完成签到 ,获得积分10
13秒前
开朗满天发布了新的文献求助10
14秒前
每天睡不醒完成签到,获得积分10
15秒前
Carrots完成签到 ,获得积分10
15秒前
xwwx完成签到 ,获得积分10
16秒前
良月完成签到 ,获得积分10
16秒前
宝贝完成签到 ,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610188
求助须知:如何正确求助?哪些是违规求助? 4016230
关于积分的说明 12434730
捐赠科研通 3697746
什么是DOI,文献DOI怎么找? 2038975
邀请新用户注册赠送积分活动 1071892
科研通“疑难数据库(出版商)”最低求助积分说明 955573

今日热心研友

salan
20
小明
20
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10