A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis

医学 无线电技术 脂肪肉瘤 平滑肌肉瘤 肉瘤 队列 回顾性队列研究 放射科 分级(工程) 病理 肿瘤科 内科学 土木工程 工程类
作者
Amani Arthur,Matthew Orton,Robby Emsley,Sharon Vit,Christian Kelly‐Morland,D. Strauß,Jason Lunn,Simon Doran,Hafida Lmalem,Axelle Nzokirantevye,Saskia Litière,Sylvie Bonvalot,Rick L. Haas,Alessandro Gronchi,Dirk Van Gestel,Anne Ducassou,Chandrajit P. Raut,Pierre Méeus,Mateusz Spałek,M. Hatton
出处
期刊:Lancet Oncology [Elsevier]
卷期号:24 (11): 1277-1286 被引量:29
标识
DOI:10.1016/s1470-2045(23)00462-x
摘要

Summary

Background

Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma.

Methods

A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade.

Findings

170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27–89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33–77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set.

Interpretation

Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas.

Funding

Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助Alora采纳,获得10
刚刚
嘀嘀菇菇完成签到 ,获得积分10
刚刚
1秒前
谨慎雪碧发布了新的文献求助30
1秒前
番茄豆丁发布了新的文献求助80
2秒前
YYY发布了新的文献求助10
2秒前
4秒前
2003zfc发布了新的文献求助50
4秒前
酷波er应助机智雅阳采纳,获得10
4秒前
5秒前
斯文明杰发布了新的文献求助10
6秒前
刘肖完成签到,获得积分10
6秒前
我爱写论文完成签到,获得积分10
7秒前
Lisa田发布了新的文献求助20
8秒前
8秒前
8秒前
Helium发布了新的文献求助10
8秒前
可爱的onetwo关注了科研通微信公众号
9秒前
Percy给Percy的求助进行了留言
9秒前
11秒前
11秒前
11秒前
甘齐发布了新的文献求助10
12秒前
Jnest完成签到,获得积分10
13秒前
莫名乐乐发布了新的文献求助10
13秒前
爱听歌电灯胆完成签到 ,获得积分10
15秒前
乐乐应助wenbaka采纳,获得10
15秒前
YYY完成签到,获得积分20
16秒前
Lucas选李华完成签到 ,获得积分10
16秒前
百事从欢发布了新的文献求助10
16秒前
春风不渡人间完成签到,获得积分10
17秒前
麦热穆罕完成签到,获得积分10
17秒前
科研通AI2S应助vippp采纳,获得10
17秒前
18秒前
Best发布了新的文献求助10
18秒前
852应助谨慎雪碧采纳,获得10
18秒前
牛牛完成签到,获得积分10
18秒前
19秒前
沉毅完成签到,获得积分20
20秒前
我是老大应助百事从欢采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452