A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis

医学 无线电技术 脂肪肉瘤 平滑肌肉瘤 肉瘤 队列 回顾性队列研究 放射科 分级(工程) 病理 肿瘤科 内科学 土木工程 工程类
作者
Amani Arthur,Matthew Orton,Robin Emsley,Sharon Vit,Christian Kelly‐Morland,D. Strauß,Jason Lunn,Simon Doran,Hafida Lmalem,Axelle Nzokirantevye,Saskia Litière,Sylvie Bonvalot,Rick L. Haas,Alessandro Gronchi,Dirk Van Gestel,A. Ducassou,Chandrajit P. Raut,Pierre Méeus,Mateusz Spałek,M. Hatton,C. Le Péchoux,Khin Thway,Cyril Fisher,Robin L. Jones,Paul H. Huang,Christina Messiou
出处
期刊:Lancet Oncology [Elsevier]
卷期号:24 (11): 1277-1286 被引量:12
标识
DOI:10.1016/s1470-2045(23)00462-x
摘要

Summary

Background

Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma.

Methods

A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade.

Findings

170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27–89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33–77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set.

Interpretation

Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas.

Funding

Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任风完成签到,获得积分10
刚刚
刚刚
大模型应助董晓坤采纳,获得10
刚刚
1秒前
1秒前
2秒前
3秒前
Two-Capitals发布了新的文献求助10
4秒前
黑粉头头发布了新的文献求助10
6秒前
沈sm发布了新的文献求助10
6秒前
梧桐发布了新的文献求助10
6秒前
寒冷乐驹发布了新的文献求助30
6秒前
fabius0351完成签到,获得积分10
7秒前
笑嘻嘻发布了新的文献求助10
8秒前
8秒前
Bethune完成签到 ,获得积分10
8秒前
哈哈王子完成签到,获得积分10
11秒前
顾矜应助陈天爱学习采纳,获得10
11秒前
ZLJ完成签到,获得积分20
12秒前
李木头完成签到,获得积分10
13秒前
搬砖工人完成签到,获得积分10
14秒前
suka完成签到,获得积分10
14秒前
15秒前
zlzlzte发布了新的文献求助10
16秒前
JamesPei应助合适的人类采纳,获得30
17秒前
19秒前
祥小哥完成签到,获得积分10
19秒前
innocent完成签到,获得积分10
20秒前
六日发布了新的文献求助30
20秒前
Russell完成签到 ,获得积分10
26秒前
27秒前
zlzlzte完成签到,获得积分10
27秒前
新楚完成签到 ,获得积分10
27秒前
在水一方应助研究笙小张采纳,获得10
27秒前
kkuula完成签到,获得积分10
29秒前
29秒前
30秒前
ljforever完成签到,获得积分10
31秒前
吴丹完成签到,获得积分10
31秒前
liniubi发布了新的文献求助10
33秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587