A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis

医学 无线电技术 脂肪肉瘤 平滑肌肉瘤 肉瘤 队列 回顾性队列研究 放射科 分级(工程) 病理 肿瘤科 内科学 土木工程 工程类
作者
Amani Arthur,Matthew Orton,Robby Emsley,Sharon Vit,Christian Kelly‐Morland,D. Strauß,Jason Lunn,Simon Doran,Hafida Lmalem,Axelle Nzokirantevye,Saskia Litière,Sylvie Bonvalot,Rick L. Haas,Alessandro Gronchi,Dirk Van Gestel,Anne Ducassou,Chandrajit P. Raut,Pierre Méeus,Mateusz Spałek,M. Hatton
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:24 (11): 1277-1286 被引量:29
标识
DOI:10.1016/s1470-2045(23)00462-x
摘要

Summary

Background

Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma.

Methods

A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade.

Findings

170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27–89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33–77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set.

Interpretation

Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas.

Funding

Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cm发布了新的文献求助10
刚刚
1秒前
liuzhanyu发布了新的文献求助10
1秒前
春天在这李完成签到,获得积分10
2秒前
红红发布了新的文献求助10
2秒前
2秒前
Ki_Ayasato发布了新的文献求助30
2秒前
3秒前
ttt发布了新的文献求助10
3秒前
3秒前
3秒前
南有嘉鱼完成签到 ,获得积分10
3秒前
哈哈完成签到,获得积分20
3秒前
3秒前
Owen应助WW采纳,获得10
4秒前
4秒前
4秒前
4秒前
顺利一江完成签到 ,获得积分10
4秒前
6秒前
小伍同学完成签到,获得积分10
6秒前
6秒前
科研通AI5应助ii采纳,获得10
6秒前
科目三应助yizhixiaobujin采纳,获得10
6秒前
隐形发布了新的文献求助10
7秒前
2032jia完成签到,获得积分10
7秒前
ruqinmq完成签到,获得积分10
7秒前
第三方斯蒂芬完成签到,获得积分20
7秒前
1z2x3s发布了新的文献求助10
7秒前
liuzhanyu发布了新的文献求助10
8秒前
哈哈发布了新的文献求助10
8秒前
瑶瑶发布了新的文献求助10
8秒前
Ava应助CikY采纳,获得10
9秒前
莎莎完成签到 ,获得积分10
9秒前
星空剪影发布了新的文献求助10
10秒前
可靠半青完成签到 ,获得积分10
10秒前
11秒前
如意猕猴桃应助努力采纳,获得20
11秒前
羽羽发布了新的文献求助10
11秒前
ghq发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5190390
求助须知:如何正确求助?哪些是违规求助? 4374194
关于积分的说明 13620019
捐赠科研通 4227906
什么是DOI,文献DOI怎么找? 2319013
邀请新用户注册赠送积分活动 1317523
关于科研通互助平台的介绍 1267494