已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A CT-based radiomics classification model for the prediction of histological type and tumour grade in retroperitoneal sarcoma (RADSARC-R): a retrospective multicohort analysis

医学 无线电技术 脂肪肉瘤 平滑肌肉瘤 肉瘤 队列 回顾性队列研究 放射科 分级(工程) 病理 肿瘤科 内科学 土木工程 工程类
作者
Amani Arthur,Matthew Orton,Robby Emsley,Sharon Vit,Christian Kelly‐Morland,D. Strauß,Jason Lunn,Simon Doran,Hafida Lmalem,Axelle Nzokirantevye,Saskia Litière,Sylvie Bonvalot,Rick L. Haas,Alessandro Gronchi,Dirk Van Gestel,Anne Ducassou,Chandrajit P. Raut,Pierre Méeus,Mateusz Spałek,M. Hatton
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:24 (11): 1277-1286 被引量:29
标识
DOI:10.1016/s1470-2045(23)00462-x
摘要

Summary

Background

Retroperitoneal sarcomas are tumours with a poor prognosis. Upfront characterisation of the tumour is difficult, and under-grading is common. Radiomics has the potential to non-invasively characterise the so-called radiological phenotype of tumours. We aimed to develop and independently validate a CT-based radiomics classification model for the prediction of histological type and grade in retroperitoneal leiomyosarcoma and liposarcoma.

Methods

A retrospective discovery cohort was collated at our centre (Royal Marsden Hospital, London, UK) and an independent validation cohort comprising patients recruited in the phase 3 STRASS study of neoadjuvant radiotherapy in retroperitoneal sarcoma. Patients aged older than 18 years with confirmed primary leiomyosarcoma or liposarcoma proceeding to surgical resection with available contrast-enhanced CT scans were included. Using the discovery dataset, a CT-based radiomics workflow was developed, including manual delineation, sub-segmentation, feature extraction, and predictive model building. Separate probabilistic classifiers for the prediction of histological type and low versus intermediate or high grade tumour types were built and tested. Independent validation was then performed. The primary objective of the study was to develop radiomic classification models for the prediction of retroperitoneal leiomyosarcoma and liposarcoma type and histological grade.

Findings

170 patients recruited between Oct 30, 2016, and Dec 23, 2020, were eligible in the discovery cohort and 89 patients recruited between Jan 18, 2012, and April 10, 2017, were eligible in the validation cohort. In the discovery cohort, the median age was 63 years (range 27–89), with 83 (49%) female and 87 (51%) male patients. In the validation cohort, median age was 59 years (range 33–77), with 46 (52%) female and 43 (48%) male patients. The highest performing model for the prediction of histological type had an area under the receiver operator curve (AUROC) of 0·928 on validation, based on a feature set of radiomics and approximate radiomic volume fraction. The highest performing model for the prediction of histological grade had an AUROC of 0·882 on validation, based on a radiomics feature set.

Interpretation

Our validated radiomics model can predict the histological type and grade of retroperitoneal sarcomas with excellent performance. This could have important implications for improving diagnosis and risk stratification in retroperitoneal sarcomas.

Funding

Wellcome Trust, European Organisation for Research and Treatment of Cancer-Soft Tissue and Bone Sarcoma Group, the National Institutes for Health, and the National Institute for Health and Care Research Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木小易完成签到,获得积分10
刚刚
endocrine完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
星辰大海应助ceeray23采纳,获得20
2秒前
小超完成签到,获得积分10
3秒前
晴雨天完成签到 ,获得积分10
5秒前
niuma发布了新的文献求助10
5秒前
斯文败类应助lxy采纳,获得10
5秒前
endocrine发布了新的文献求助10
6秒前
优秀不愁发布了新的文献求助10
7秒前
11秒前
12秒前
英俊的铭应助ceeray23采纳,获得20
12秒前
茉莉完成签到 ,获得积分10
13秒前
酷波er应助clove采纳,获得10
14秒前
信哥哥发布了新的文献求助10
14秒前
14秒前
橙橙橙橙发布了新的文献求助10
15秒前
18秒前
18秒前
Owen应助暮然采纳,获得10
19秒前
20秒前
科研小白发布了新的文献求助10
20秒前
21秒前
王仙人发布了新的文献求助10
22秒前
liu发布了新的文献求助10
23秒前
23秒前
zhang完成签到,获得积分10
24秒前
无花果应助科研小白采纳,获得10
24秒前
红豆盖饭发布了新的文献求助10
27秒前
27秒前
SCI完成签到,获得积分10
27秒前
28秒前
28秒前
28秒前
李健的小迷弟应助xkx采纳,获得10
30秒前
暮然发布了新的文献求助10
31秒前
贝尔发布了新的文献求助10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018389
求助须知:如何正确求助?哪些是违规求助? 4257734
关于积分的说明 13269841
捐赠科研通 4062244
什么是DOI,文献DOI怎么找? 2221850
邀请新用户注册赠送积分活动 1231029
关于科研通互助平台的介绍 1153784