Constructing zinc single-atom catalysts for the direct electron-transfer mechanism in peroxymonosulfate activation to degrade sulfamethoxazole efficiently

化学 电子转移 单线态氧 催化作用 光化学 羟基自由基 氧化还原 吸附 高级氧化法 羟基化 无机化学 激进的 氧气 有机化学
作者
Yanan Xiao,Jiahui Hu,Xiaoyan Li,Yubin Zou,Li Yin,Lin Lin,Bing Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:474: 145973-145973 被引量:43
标识
DOI:10.1016/j.cej.2023.145973
摘要

Direct electron-transfer dominated organic pollutant removal technology is considered an economical and promising method for selective water and wastewater treatment. However, in the heterogeneous catalysis of activating peroxymonosulfate (PMS) to generate the surface-bound PMS*, reactive oxygen species such as sulfate radical, hydroxyl radical, and singlet oxygen are easily produced at the same time, resulting in waste of PMS. Herein, we reported an efficient zinc single-atom catalyst (Zn-N@C) that could activate PMS to induce an electron-transfer mechanism and degrade 95.7% sulfamethoxazole (SMX) within 20 min, which was superior to most of the advanced oxidation systems that have been reported for the removal of SMX. The negligible effect of anions and humic acid in water on Zn-N@C/PMS systems made it potential for practical application. Experiments and density functional theory calculations revealed that ZnN4 as the active site for PMS activation, and the enhanced redox potential of Zn-N@C/PMS* complexes improved the removal efficiency of SMX by demonstrating the increased work function and enlarged electron density near the Fermi level of Zn-N@C after PMS adsorption. SMX was degraded predominately via SO2 extrusion, hydroxylation, and cleavage of the S–N and S–C bonds. The diminished ecotoxicity of transformation products suggested a controlled risk of SMX degradation during the Zn-N@C/PMS treatment process. This study expands the research scope of transitional metal-based single-atom catalysts to zinc on PMS activation and deepens the understanding of electron-transfer oxidation pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我爱学习完成签到,获得积分10
刚刚
刚刚
堪曼凝完成签到,获得积分10
刚刚
ning发布了新的文献求助10
1秒前
1秒前
小蘑菇应助若尘采纳,获得10
1秒前
脑洞疼应助恒瑞彭于晏采纳,获得10
1秒前
DrCuiTianjin发布了新的文献求助10
1秒前
2秒前
圈圈完成签到,获得积分10
2秒前
2秒前
2秒前
搜集达人应助陶醉水风采纳,获得10
2秒前
救驾来迟发布了新的文献求助10
2秒前
华仔应助岁岁采纳,获得10
3秒前
3秒前
儒雅HR发布了新的文献求助10
3秒前
哈哈完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
LL完成签到 ,获得积分10
3秒前
3秒前
leo发布了新的文献求助20
4秒前
小二郎应助小吉采纳,获得10
4秒前
Akim应助IIIIIIIIIIIIII采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
myth发布了新的文献求助10
5秒前
猪猪hero发布了新的文献求助30
6秒前
MengpoZhao发布了新的文献求助10
6秒前
安静的迎荷完成签到,获得积分10
6秒前
6秒前
7秒前
tianj关注了科研通微信公众号
7秒前
Hello应助future采纳,获得10
8秒前
8秒前
小马甲应助ning采纳,获得10
9秒前
科研怪发布了新的文献求助10
9秒前
neurist发布了新的文献求助10
9秒前
春临燕发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719629
求助须知:如何正确求助?哪些是违规求助? 5257097
关于积分的说明 15289239
捐赠科研通 4869416
什么是DOI,文献DOI怎么找? 2614807
邀请新用户注册赠送积分活动 1564797
关于科研通互助平台的介绍 1521994