Constructing zinc single-atom catalysts for the direct electron-transfer mechanism in peroxymonosulfate activation to degrade sulfamethoxazole efficiently

化学 电子转移 单线态氧 催化作用 光化学 羟基自由基 氧化还原 吸附 高级氧化法 羟基化 无机化学 激进的 氧气 有机化学
作者
Yanan Xiao,Jiahui Hu,Xiaoyan Li,Yubin Zou,Li Yin,Lin Lin,Bing Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:474: 145973-145973 被引量:10
标识
DOI:10.1016/j.cej.2023.145973
摘要

Direct electron-transfer dominated organic pollutant removal technology is considered an economical and promising method for selective water and wastewater treatment. However, in the heterogeneous catalysis of activating peroxymonosulfate (PMS) to generate the surface-bound PMS*, reactive oxygen species such as sulfate radical, hydroxyl radical, and singlet oxygen are easily produced at the same time, resulting in waste of PMS. Herein, we reported an efficient zinc single-atom catalyst (Zn-N@C) that could activate PMS to induce an electron-transfer mechanism and degrade 95.7% sulfamethoxazole (SMX) within 20 min, which was superior to most of the advanced oxidation systems that have been reported for the removal of SMX. The negligible effect of anions and humic acid in water on Zn-N@C/PMS systems made it potential for practical application. Experiments and density functional theory calculations revealed that ZnN4 as the active site for PMS activation, and the enhanced redox potential of Zn-N@C/PMS* complexes improved the removal efficiency of SMX by demonstrating the increased work function and enlarged electron density near the Fermi level of Zn-N@C after PMS adsorption. SMX was degraded predominately via SO2 extrusion, hydroxylation, and cleavage of the S–N and S–C bonds. The diminished ecotoxicity of transformation products suggested a controlled risk of SMX degradation during the Zn-N@C/PMS treatment process. This study expands the research scope of transitional metal-based single-atom catalysts to zinc on PMS activation and deepens the understanding of electron-transfer oxidation pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
子车茗应助小星星采纳,获得10
1秒前
科研抖擞发布了新的文献求助10
1秒前
霖槿完成签到,获得积分10
2秒前
lilililili完成签到,获得积分10
2秒前
1234完成签到 ,获得积分10
2秒前
2秒前
2秒前
大脚仙完成签到,获得积分10
3秒前
吃饭加汤完成签到,获得积分10
3秒前
刘腾完成签到,获得积分10
3秒前
贵金属发布了新的文献求助10
4秒前
4秒前
向上又积极完成签到 ,获得积分20
4秒前
5秒前
江脸脸关注了科研通微信公众号
6秒前
明明发布了新的文献求助10
6秒前
上官若男应助量子采纳,获得10
6秒前
李哈发布了新的文献求助10
7秒前
8秒前
陈军应助学术小白采纳,获得10
10秒前
彭于晏完成签到,获得积分10
10秒前
科研通AI2S应助lennon962464采纳,获得10
10秒前
10秒前
念与惜完成签到,获得积分10
10秒前
星辰大海应助阳佟听荷采纳,获得10
11秒前
Billy发布了新的文献求助10
11秒前
贵金属完成签到,获得积分10
12秒前
fasfsbbsdd完成签到,获得积分20
12秒前
顺心的莫茗完成签到,获得积分10
13秒前
13秒前
开开发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
linty应助洋芋片采纳,获得10
14秒前
我是老大应助十三采纳,获得10
14秒前
14秒前
15秒前
科研发布了新的文献求助10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655