清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

More Synergy, Less Redundancy: Exploiting Joint Mutual Information for Self-Supervised Learning

相互信息 计算机科学 交互信息 冗余(工程) 利用 数据挖掘 机器学习 人工智能 背景(考古学) 信息论 数学 古生物学 统计 计算机安全 生物 操作系统
作者
Salman Mohamadi,Gianfranco Doretto,Donald Adjeroh
标识
DOI:10.1109/icip49359.2023.10222547
摘要

Self-supervised learning (SSL) is now a serious competitor for supervised learning, even though it does not require data annotation. Several baselines have attempted to make SSL models exploit information about data distribution, and less dependent on the augmentation effect. However, there is no clear consensus on whether maximizing or minimizing the mutual information between representations of augmentation views practically contribute to improvement or degradation in performance of SSL models. This paper is a fundamental work where, we investigate the role of mutual information in SSL, and reformulate the problem of SSL in the context of a new perspective on mutual information. To this end, we consider joint mutual information from the perspective of partial information decomposition (PID) as a key step in reliable multivariate information measurement. PID enables us to decompose joint mutual information into three important components, namely, unique information, redundant information and synergistic information. Our framework aims for minimizing the redundant information between views and the desired target representation while maximizing the synergistic information at the same time. Our experiments lead to a re-calibration of two redundancy reduction baselines, and a proposal for a new SSL training protocol. Experimental results on multiple datasets and two downstream tasks show the effectiveness of this framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助飞快的冷亦采纳,获得10
7秒前
科研小白发布了新的文献求助10
16秒前
16秒前
21秒前
Akim应助supermaltose采纳,获得10
26秒前
方白秋完成签到,获得积分0
27秒前
栾小鱼完成签到,获得积分10
1分钟前
Ivan完成签到,获得积分10
1分钟前
可爱的函函应助紫荆采纳,获得10
2分钟前
2分钟前
w40701完成签到,获得积分10
2分钟前
芹123发布了新的文献求助10
2分钟前
紫荆发布了新的文献求助10
2分钟前
科研小白完成签到,获得积分10
2分钟前
芹123发布了新的文献求助10
3分钟前
超体完成签到 ,获得积分10
3分钟前
芹123完成签到,获得积分10
3分钟前
4分钟前
4分钟前
老石完成签到 ,获得积分10
4分钟前
刘刘完成签到 ,获得积分10
4分钟前
11发布了新的文献求助10
4分钟前
123完成签到 ,获得积分10
4分钟前
大医仁心完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
ukz37752发布了新的文献求助200
5分钟前
5分钟前
赘婿应助科研通管家采纳,获得50
5分钟前
5分钟前
nixgnef发布了新的文献求助10
5分钟前
科研通AI5应助armpit采纳,获得10
5分钟前
6分钟前
6分钟前
紫熊完成签到,获得积分10
6分钟前
JamesPei应助snowskating采纳,获得10
6分钟前
AmyHu完成签到,获得积分10
6分钟前
jiacheng发布了新的文献求助10
6分钟前
Alisha完成签到,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926803
求助须知:如何正确求助?哪些是违规求助? 4196382
关于积分的说明 13032610
捐赠科研通 3968735
什么是DOI,文献DOI怎么找? 2175117
邀请新用户注册赠送积分活动 1192274
关于科研通互助平台的介绍 1102675