Freight train speed active disturbance rejection tracking and wheel anti-slip based on fuzzy neural network with DBO optimization

控制理论(社会学) 卡尔曼滤波器 模型预测控制 工程类 电子速度控制 扭矩 人工神经网络 滑移率 打滑(空气动力学) 模糊控制系统 计算机科学 控制工程 模糊逻辑 汽车工程 制动器 人工智能 控制(管理) 航空航天工程 物理 电气工程 热力学
作者
Lingzhi Yi,Wenbo Jiang,Yu Yi,Jianlin Li,Cheng Xie
出处
期刊:Electrical Engineering [Springer Nature]
被引量:3
标识
DOI:10.1007/s00202-023-02008-w
摘要

In this paper, we present a proposed scheme for speed tracking control specifically designed for freight trains. This innovative speed tracking approach effectively prevents wheel slippage and ensures optimal speed control of the traction motor. The strategy integrates the use of Direct Torque Control (DTC), a technique employed by the HXD1 electric traction locomotive to regulate the asynchronous motor. To achieve velocity tracking control, we implement a Predictive Auto Disturbance Rejection Control (PADRC) system. Notably, the PADRC system includes an output prediction module estimator that enables accurate forecasting of time-delay system responses. Additionally, we develop an Unscented Kalman Filter (UKF) observer and seamlessly integrate an adaptive parameter adjustment mechanism, powered by Dung Beetle Optimizer-Fuzzy Neural Network (DBO-FNN), into the observer architecture. By utilizing the anti-slip parameters obtained through this observer, we determine the control scheme for anti-skid control. We validate the efficacy of this scheme through simulations using an actual speed curve of a freight train under both wet and dry pavement conditions. The results show a remarkable improvement in speed tracking accuracy, with respective increases of 66.45% and 56.29% over Adaptive Model Predictive Control (AMPC) and Non-Linear Auto Disturbance Rejection Control (NLADRC), in terms of speed tracking. Moreover, the tracking stationarity witnesses notable enhancements, increasing by 42.07% and 60.87% respectively. Additionally, the anti-slip performance of trains running on dry and wet tracks increased by 12.45% and 26.56%, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiao完成签到,获得积分10
刚刚
1秒前
Dany发布了新的文献求助10
1秒前
明杰发布了新的文献求助10
1秒前
JING发布了新的文献求助10
1秒前
科研通AI6应助Wednesday Chong采纳,获得10
2秒前
Elena发布了新的文献求助10
2秒前
Stella应助zhuzhu采纳,获得10
2秒前
xxx完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
glf0203发布了新的文献求助10
4秒前
5秒前
沉默的书琴完成签到,获得积分10
5秒前
6秒前
三三完成签到,获得积分10
6秒前
星辰大海应助颜颜采纳,获得10
6秒前
wanting完成签到,获得积分20
6秒前
斯文败类应助清爽的易真采纳,获得10
7秒前
7秒前
puzhongjiMiQ发布了新的文献求助50
8秒前
青青儿发布了新的文献求助10
8秒前
puzhongjiMiQ发布了新的文献求助10
8秒前
puzhongjiMiQ发布了新的文献求助10
8秒前
舒适可乐完成签到,获得积分10
8秒前
puzhongjiMiQ发布了新的文献求助50
9秒前
puzhongjiMiQ发布了新的文献求助10
9秒前
scutwqq发布了新的文献求助10
9秒前
我不爱池鱼应助cxw采纳,获得10
9秒前
科研通AI6应助耍酷蝴蝶采纳,获得10
9秒前
9秒前
uu完成签到 ,获得积分10
9秒前
小小的梦想完成签到,获得积分10
10秒前
10秒前
10秒前
自挂东南枝完成签到,获得积分10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581398
求助须知:如何正确求助?哪些是违规求助? 4665771
关于积分的说明 14758591
捐赠科研通 4607692
什么是DOI,文献DOI怎么找? 2528319
邀请新用户注册赠送积分活动 1497608
关于科研通互助平台的介绍 1466474