Deep learning-based framework for the observation of real-time melt pool and detection of anomaly in wire-arc additive manufacturing

弧(几何) 人工智能 计算机科学 异常检测 冶金 材料科学 机械工程 工程类
作者
Mukesh Chandra,Sonu Rajak,Vimal K.E.K
出处
期刊:Materials and Manufacturing Processes [Taylor & Francis]
卷期号:39 (6): 761-777 被引量:12
标识
DOI:10.1080/10426914.2023.2254386
摘要

ABSTRACTObject detection has become a popular tool of deep learning in the era of digital manufacturing. In this study, the most powerful and efficient object detection algorithm, i.e., You Only Look Once (YOLO) algorithm, was used to detect anomalies in deposited beads of wire-arc additive manufacturing (WAAM) using melt pool images. This study used the latest version of YOLO algorithm to train and validate the custom image dataset of the melt pool obtained by conducting experiments using a robotic-controlled WAAM. The mean average precision (mAP) for the "Regular bead" class and the "Irregular bead" class reached 99% at an Intersection over Union (IoU) threshold of 0.5, for both training and validation. When the model was tested for new or unseen datasets by conducting four new experimental trials, the mAP value for the "Regular bead" class reached 98.47% and for the "Irregular bead" class reached 96.68% at an average processing time of 0.014 s/frame. The object detection algorithm YOLO has shown an excellent processing time of 15 ms per frame, which shows its potential for real-time application in the manufacturing industry.KEYWORDS: WAAMdeep learningobject detectionYOLOv8real-time application AcknowledgmentsThe authors would like to thank Department of Production and Industrial Engineering, BIT Sindri, Dhanbad for providing the research facility.Disclosure statementNo potential conflict of interest was reported by the author(s).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助dfhh采纳,获得10
2秒前
2秒前
我先睡了应助封闭货车采纳,获得10
2秒前
2秒前
谢灵运完成签到,获得积分10
5秒前
科研达人发布了新的文献求助10
10秒前
10秒前
10秒前
cherry bomb完成签到,获得积分10
10秒前
朱建军应助科研通管家采纳,获得10
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
12秒前
13秒前
13秒前
慕青应助Ace采纳,获得10
14秒前
14秒前
16秒前
ha发布了新的文献求助10
16秒前
songsong668发布了新的文献求助10
19秒前
阿秋发布了新的文献求助30
20秒前
21秒前
Ava应助qyang采纳,获得10
21秒前
情怀应助haochi采纳,获得30
23秒前
24秒前
24秒前
25秒前
26秒前
27秒前
27秒前
Ace发布了新的文献求助10
28秒前
songsong668完成签到,获得积分10
28秒前
阿秋完成签到,获得积分10
29秒前
坦率不惜完成签到,获得积分10
30秒前
30秒前
30秒前
30秒前
科研达人发布了新的文献求助30
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629