Uncovering microbial food webs using machine learning

生物 有壳变形虫 生态学 生态系统 营养水平 食物网 微生物生态学 特质 生物多样性 丰度(生态学) 机器学习 人工智能 计算机科学 泥炭 遗传学 程序设计语言 细菌
作者
Janna M. Barel,Owen L. Petchey,Abir Ghaffouli,Vincent E. J. Jassey
出处
期刊:Soil Biology & Biochemistry [Elsevier]
卷期号:186: 109174-109174 被引量:1
标识
DOI:10.1016/j.soilbio.2023.109174
摘要

Microbial trophic interactions are an important aspect of microbiomes in any ecosystem. They can reveal how microbial diversity modulates ecosystem functioning. However, uncovering microbial feeding interactions is a challenge because direct observation of predation is difficult with classical approaches such as behaviour and gut contents analyses. To overcome this issue, recent developments in trait-matching and machine-learning approaches are promising for successfully inferring microbial feeding links. Here, we tested the ability of six machine-learning algorithms for predicting microbial feeding links, based on species traits and taxonomy. By incorporating organism speed, size and abundance into the model predictions, we further estimated the probability of feeding links occurring. We found that the model trained with the boosted regression trees algorithm predicted feeding links between microbes best. Sensitivity analyses showed that feeding link predictions were robust against faulty predictors in the training set, and capable of predicting feeding links for empirical datasets containing up to 50% of new taxa. We cross-validated the feeding link predictions using an empirical dataset from a Sphagnum-dominated peatland with direct feeding observations for two dominant testate amoeba predators. The feeding habits of the two testate amoeba species were comparable between microscopic observations and model predictions. Machine learning thus offers a means to develop robust models for studying microbial food webs. It offers a route to combine traditional observations with DNA-based sampling strategies to upscale soil biodiversity research along ecological gradients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
阎万仇发布了新的文献求助10
3秒前
jinke发布了新的文献求助10
4秒前
junjun完成签到,获得积分20
4秒前
思源应助绾绾采纳,获得10
4秒前
欧阳媭完成签到,获得积分10
6秒前
LLL发布了新的文献求助10
6秒前
科研通AI2S应助高高饼干采纳,获得10
7秒前
8秒前
Ava应助感性的馒头采纳,获得10
9秒前
Aylin完成签到,获得积分10
9秒前
9秒前
万能图书馆应助xq1213采纳,获得10
10秒前
jinke完成签到,获得积分10
10秒前
10秒前
阎万仇完成签到,获得积分10
10秒前
幸福语儿完成签到,获得积分10
11秒前
12秒前
冬瓜发布了新的文献求助10
13秒前
janejane发布了新的文献求助10
13秒前
LLL完成签到,获得积分10
13秒前
15秒前
qinglingdao应助Aylin采纳,获得10
16秒前
值雨完成签到,获得积分10
17秒前
Geodada完成签到,获得积分10
17秒前
杂货铺老板娘完成签到,获得积分10
17秒前
阿元完成签到,获得积分10
18秒前
小马甲应助int0030采纳,获得10
18秒前
圣诞快乐劳伦斯先生完成签到,获得积分10
18秒前
夏夏夏完成签到,获得积分10
19秒前
19秒前
飞哥发布了新的文献求助10
20秒前
AstroWander完成签到,获得积分10
20秒前
喂喂完成签到,获得积分10
20秒前
笑点低嵩完成签到,获得积分10
20秒前
文艺的平松关注了科研通微信公众号
20秒前
英俊的铭应助我的miemie采纳,获得10
21秒前
情怀应助22采纳,获得10
21秒前
科目三应助neurospine采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143796
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814709
捐赠科研通 2451390
什么是DOI,文献DOI怎么找? 1304463
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419