A Self-Adaptive Collaborative Differential Evolution Algorithm for Solving Energy Resource Management Problems in Smart Grids

计算机科学 数学优化 算法 资源管理(计算) 差异进化 能源管理 分布式计算 数学 能量(信号处理) 统计
作者
Haoxiang Qin,Wenlei Bai,Yi Xiang,Fangqing Liu,Yuyan Han,Ling Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (5): 1427-1441 被引量:5
标识
DOI:10.1109/tevc.2023.3312769
摘要

Handling energy resource management (ERM) in today's energy systems is complex and challenging due to uncertainties arising from the high penetration of distributed energy resources. Such penetration introduces various uncertain factors, such as renewable energy, energy storage, and electric vehicles, making it difficult for traditional mathematical methods to find effective solutions. However, Evolutionary Algorithms (EAs) have shown good performance in solving this problem. Therefore, in this paper, a self-adaptive collaborative differential evolution algorithm (SADEA) is proposed to solve the ERM problem under uncertainty. In SADEA, a three-stage adaptive collaboration strategy, includes boundary randomization stage, knowledge-assisted collaboration stage, and range restructuration stage, is used to generate collaborative solutions. The collaborative solutions generated in the above stages will jointly participate in the perturbation of DE strategies to explore promising solutions. In addition, different DE strategies are selected according to count values and random factors. At the end of the algorithm, boundary control, elite selection and retention are used to ensure the legitimacy and robustness of solutions. The proposed SADEA is compared to several state-of-the-art algorithms on a real-world distribution network located in Salamanca, Spain. The results show that SADEA is superior to its competitors in terms of the objective function, ranking index, and convergence. In summary, the proposed algorithm is effective to handle the ERM problem under uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo完成签到,获得积分10
刚刚
zmmmm发布了新的文献求助10
1秒前
雪山飞龙发布了新的文献求助30
1秒前
1秒前
Jenny应助小土豆采纳,获得50
1秒前
情怀应助布鲁鲁采纳,获得10
1秒前
1秒前
悦耳寒松发布了新的文献求助10
2秒前
2秒前
霍嘉文完成签到,获得积分10
2秒前
3秒前
bluesiryao发布了新的文献求助10
3秒前
李爱国应助23采纳,获得10
4秒前
4秒前
SHJ发布了新的文献求助10
4秒前
开心的幻柏完成签到 ,获得积分10
4秒前
大神完成签到 ,获得积分20
4秒前
4秒前
5秒前
5秒前
闪闪的YOSH完成签到,获得积分10
5秒前
Jimmy完成签到,获得积分10
5秒前
仁爱书白完成签到,获得积分10
6秒前
6秒前
孤独的珩发布了新的文献求助10
7秒前
孙悦完成签到,获得积分10
8秒前
lu完成签到,获得积分10
8秒前
Rachel发布了新的文献求助10
8秒前
Jimmy发布了新的文献求助10
8秒前
丘比特应助隐形的易巧采纳,获得10
8秒前
仁爱书白发布了新的文献求助10
9秒前
善学以致用应助zhui采纳,获得10
9秒前
9秒前
9秒前
小蘑菇应助拼搏起眸采纳,获得10
9秒前
山止川行完成签到 ,获得积分10
9秒前
9秒前
10秒前
okghy发布了新的文献求助10
10秒前
zcydbttj2011完成签到 ,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794