钝化
钙钛矿(结构)
材料科学
光伏系统
光电子学
能量转换效率
光致发光
载流子寿命
重组
串联
纳米技术
化学
硅
结晶学
生态学
生物化学
图层(电子)
基因
复合材料
生物
作者
Cheng Liu,Yi Yang,Hao Chen,Jian Xu,Ao Liu,Abdulaziz S. R. Bati,Huihui Zhu,Luke Grater,Shreyash Hadke,Chuying Huang,Vinod K. Sangwan,Tong Cai,Donghoon Shin,Lin X. Chen,Mark C. Hersam,Chad A. Mirkin,Bin Chen,Mercouri G. Kanatzidis,Edward H. Sargent
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-11-16
卷期号:382 (6672): 810-815
被引量:154
标识
DOI:10.1126/science.adk1633
摘要
Compared with the n-i-p structure, inverted (p-i-n) perovskite solar cells (PSCs) promise increased operating stability, but these photovoltaic cells often exhibit lower power conversion efficiencies (PCEs) because of nonradiative recombination losses, particularly at the perovskite/C60 interface. We passivated surface defects and enabled reflection of minority carriers from the interface into the bulk using two types of functional molecules. We used sulfur-modified methylthio molecules to passivate surface defects and suppress recombination through strong coordination and hydrogen bonding, along with diammonium molecules to repel minority carriers and reduce contact-induced interface recombination achieved through field-effect passivation. This approach led to a fivefold longer carrier lifetime and one-third the photoluminescence quantum yield loss and enabled a certified quasi-steady-state PCE of 25.1% for inverted PSCs with stable operation at 65°C for >2000 hours in ambient air. We also fabricated monolithic all-perovskite tandem solar cells with 28.1% PCE.
科研通智能强力驱动
Strongly Powered by AbleSci AI