清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Physics-informed graph convolutional neural network for modeling geometry-adaptive steady-state natural convection

自然对流 卷积神经网络 计算机科学 人工神经网络 人工智能 对流 算法 物理 机械
作者
Jiang-Zhou Peng,Nadine Aubry,Yubai Li,Mei Mei,Zhihua Chen,Wei‐Tao Wu
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:216: 124593-124593 被引量:17
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124593
摘要

This paper presents a novel deep learning-based surrogate model for steady-state natural convection problem with variable geometry. Traditional deep learning based surrogate models are more or less limited by the requirement for large amounts of training data, loss of accuracy due to pixelization of the original data, the low accurate prediction near the boundaries and low geometry adaptive capability. To overcome the above challenges, the proposed natural convection prediction framework is mainly composed of a physics-informed neural network (PINN) and a graph convolutional neural network (GCN), called natural convection prediction model based on physics-informed graph convolutional network (NCV-PIGN). The GCN serves as the prediction module, inferring and predicting natural convection phenomena by considering the interactions between unstructured nodes and their neighbor; the PINN incorporates the governing equations of natural convection into the loss function of the neural network, allowing the predictions from GCN to satisfy the constraints imposed by the physical laws. The advantages of this framework are twofold: the operation principles of the GCN better align with the development of the temperature field in real situations, and the embedding of physical information strengthens the model's understanding of the flow field, accurately describing the variations of temperature gradients at the boundary positions while reducing the model's reliance on training data. Finally, to validate the superiority of the NCV-PIGN, we analyze its geometric adaptability and accuracy of prediction using single and dual heat source cases. We compare the model's prediction results at different sampling point quantities and contrast them with those of purely data-driven models. The results demonstrate that the excellent geometric adaptability and prediction capability of the proposed model can be achieved with only 20 training data and once the fully trained the model can solve natural convection problems within 3 ms. The max and mean relative errors in predicting the temperature field are less than 2% and 0.4% for both single and dual heat source cases. Compared to the pure data-driven model, the proposed model has reduced the maximum error by 65.5% and the mean error by 72%. These results validate the effectiveness of the developed NCV-PIGN model, enabling better performance of the deep learning-based surrogate models for natural convection problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拓跋雨梅完成签到 ,获得积分0
5秒前
7秒前
23秒前
等待的问夏完成签到 ,获得积分10
23秒前
科研通AI2S应助科研通管家采纳,获得10
46秒前
thchiang完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
wshiyu完成签到 ,获得积分10
2分钟前
方琼燕完成签到 ,获得积分10
4分钟前
钟可可发布了新的文献求助30
4分钟前
丘比特应助neversay4ever采纳,获得10
4分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
neversay4ever发布了新的文献求助10
5分钟前
wanci应助Omni采纳,获得10
5分钟前
ding应助neversay4ever采纳,获得10
5分钟前
宇文非笑完成签到 ,获得积分10
5分钟前
桐桐应助钟可可采纳,获得10
5分钟前
领导范儿应助Mr_老旭采纳,获得30
5分钟前
liwang9301完成签到,获得积分10
5分钟前
6分钟前
囚徒发布了新的文献求助10
6分钟前
6分钟前
6分钟前
Omni发布了新的文献求助10
6分钟前
run发布了新的文献求助10
6分钟前
6分钟前
neversay4ever发布了新的文献求助10
6分钟前
6分钟前
上官若男应助科研通管家采纳,获得10
6分钟前
lanxinge完成签到 ,获得积分10
7分钟前
momi完成签到 ,获得积分10
7分钟前
冬去春来完成签到 ,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
willlee完成签到 ,获得积分10
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356882
求助须知:如何正确求助?哪些是违规求助? 2980468
关于积分的说明 8694468
捐赠科研通 2662169
什么是DOI,文献DOI怎么找? 1457626
科研通“疑难数据库(出版商)”最低求助积分说明 674843
邀请新用户注册赠送积分活动 665767