Physics-informed graph convolutional neural network for modeling geometry-adaptive steady-state natural convection

自然对流 卷积神经网络 计算机科学 人工神经网络 人工智能 对流 算法 物理 机械
作者
Jiang-Zhou Peng,Nadine Aubry,Yubai Li,Mei Mei,Zhihua Chen,Wei‐Tao Wu
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:216: 124593-124593 被引量:17
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124593
摘要

This paper presents a novel deep learning-based surrogate model for steady-state natural convection problem with variable geometry. Traditional deep learning based surrogate models are more or less limited by the requirement for large amounts of training data, loss of accuracy due to pixelization of the original data, the low accurate prediction near the boundaries and low geometry adaptive capability. To overcome the above challenges, the proposed natural convection prediction framework is mainly composed of a physics-informed neural network (PINN) and a graph convolutional neural network (GCN), called natural convection prediction model based on physics-informed graph convolutional network (NCV-PIGN). The GCN serves as the prediction module, inferring and predicting natural convection phenomena by considering the interactions between unstructured nodes and their neighbor; the PINN incorporates the governing equations of natural convection into the loss function of the neural network, allowing the predictions from GCN to satisfy the constraints imposed by the physical laws. The advantages of this framework are twofold: the operation principles of the GCN better align with the development of the temperature field in real situations, and the embedding of physical information strengthens the model's understanding of the flow field, accurately describing the variations of temperature gradients at the boundary positions while reducing the model's reliance on training data. Finally, to validate the superiority of the NCV-PIGN, we analyze its geometric adaptability and accuracy of prediction using single and dual heat source cases. We compare the model's prediction results at different sampling point quantities and contrast them with those of purely data-driven models. The results demonstrate that the excellent geometric adaptability and prediction capability of the proposed model can be achieved with only 20 training data and once the fully trained the model can solve natural convection problems within 3 ms. The max and mean relative errors in predicting the temperature field are less than 2% and 0.4% for both single and dual heat source cases. Compared to the pure data-driven model, the proposed model has reduced the maximum error by 65.5% and the mean error by 72%. These results validate the effectiveness of the developed NCV-PIGN model, enabling better performance of the deep learning-based surrogate models for natural convection problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ahtj完成签到,获得积分10
1秒前
合适靖儿完成签到 ,获得积分10
1秒前
吨吨喝水完成签到,获得积分10
2秒前
2秒前
孙君完成签到,获得积分10
2秒前
CXC完成签到,获得积分10
2秒前
bolan发布了新的文献求助10
2秒前
2秒前
哈雷彗星完成签到,获得积分10
4秒前
暖暖完成签到 ,获得积分10
4秒前
橘子姐姐完成签到,获得积分10
4秒前
小坚果完成签到,获得积分10
4秒前
陈登完成签到,获得积分10
4秒前
务实老虎完成签到,获得积分10
4秒前
4秒前
4秒前
LYL完成签到,获得积分10
5秒前
副掌门完成签到,获得积分10
5秒前
上官若男应助Jessica采纳,获得10
5秒前
专一的书雪完成签到,获得积分10
5秒前
科目三应助犹豫山河采纳,获得30
5秒前
ZSHAN发布了新的文献求助10
5秒前
嘉丽的后花园完成签到,获得积分10
5秒前
6秒前
milan001发布了新的文献求助20
6秒前
昆昆完成签到,获得积分10
6秒前
jify完成签到,获得积分10
6秒前
6秒前
Tammy完成签到,获得积分10
7秒前
7秒前
Dragonfln完成签到,获得积分10
8秒前
淡定白易完成签到,获得积分10
8秒前
louxiaohan发布了新的文献求助10
11秒前
维生素完成签到 ,获得积分10
11秒前
11秒前
乐观的访风完成签到,获得积分10
11秒前
生言生语发布了新的文献求助10
11秒前
三伏天完成签到,获得积分10
11秒前
科研小白完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259