已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Physics-informed graph convolutional neural network for modeling geometry-adaptive steady-state natural convection

自然对流 卷积神经网络 计算机科学 人工神经网络 人工智能 对流 算法 物理 机械
作者
Jiang-Zhou Peng,Nadine Aubry,Yubai Li,Mei Mei,Zhihua Chen,Wei‐Tao Wu
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier]
卷期号:216: 124593-124593 被引量:35
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124593
摘要

This paper presents a novel deep learning-based surrogate model for steady-state natural convection problem with variable geometry. Traditional deep learning based surrogate models are more or less limited by the requirement for large amounts of training data, loss of accuracy due to pixelization of the original data, the low accurate prediction near the boundaries and low geometry adaptive capability. To overcome the above challenges, the proposed natural convection prediction framework is mainly composed of a physics-informed neural network (PINN) and a graph convolutional neural network (GCN), called natural convection prediction model based on physics-informed graph convolutional network (NCV-PIGN). The GCN serves as the prediction module, inferring and predicting natural convection phenomena by considering the interactions between unstructured nodes and their neighbor; the PINN incorporates the governing equations of natural convection into the loss function of the neural network, allowing the predictions from GCN to satisfy the constraints imposed by the physical laws. The advantages of this framework are twofold: the operation principles of the GCN better align with the development of the temperature field in real situations, and the embedding of physical information strengthens the model's understanding of the flow field, accurately describing the variations of temperature gradients at the boundary positions while reducing the model's reliance on training data. Finally, to validate the superiority of the NCV-PIGN, we analyze its geometric adaptability and accuracy of prediction using single and dual heat source cases. We compare the model's prediction results at different sampling point quantities and contrast them with those of purely data-driven models. The results demonstrate that the excellent geometric adaptability and prediction capability of the proposed model can be achieved with only 20 training data and once the fully trained the model can solve natural convection problems within 3 ms. The max and mean relative errors in predicting the temperature field are less than 2% and 0.4% for both single and dual heat source cases. Compared to the pure data-driven model, the proposed model has reduced the maximum error by 65.5% and the mean error by 72%. These results validate the effectiveness of the developed NCV-PIGN model, enabling better performance of the deep learning-based surrogate models for natural convection problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhulidusi发布了新的文献求助10
刚刚
Jahen完成签到,获得积分10
1秒前
CipherSage应助hu采纳,获得10
1秒前
领导范儿应助成太采纳,获得10
1秒前
搜集达人应助volcano采纳,获得10
1秒前
lmm完成签到 ,获得积分10
1秒前
思源应助晴子采纳,获得10
2秒前
搜集达人应助没有熬夜采纳,获得10
2秒前
2秒前
mmyhn完成签到,获得积分10
2秒前
清秀的碧彤完成签到,获得积分10
3秒前
沧浪完成签到,获得积分10
5秒前
狗十七完成签到 ,获得积分10
5秒前
健康的绿海完成签到 ,获得积分10
5秒前
Tanya47举报量子星尘求助涉嫌违规
6秒前
赘婿应助潇洒闭月采纳,获得10
7秒前
Freeasy完成签到 ,获得积分10
7秒前
8秒前
B_lue完成签到 ,获得积分10
9秒前
ZTLlele完成签到 ,获得积分10
9秒前
kevin完成签到 ,获得积分10
10秒前
人美心善大野驴完成签到 ,获得积分10
10秒前
岳小龙完成签到 ,获得积分10
10秒前
旦皋完成签到 ,获得积分10
11秒前
yuqinghui98完成签到 ,获得积分10
12秒前
liuyx完成签到 ,获得积分10
12秒前
mm发布了新的文献求助10
12秒前
12秒前
Sdafah完成签到,获得积分10
14秒前
小余同学完成签到 ,获得积分10
15秒前
美味牛肝菌完成签到 ,获得积分10
15秒前
18秒前
潇洒闭月发布了新的文献求助10
18秒前
dada完成签到,获得积分10
18秒前
Jack完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
19秒前
欣欣完成签到,获得积分10
20秒前
晴子发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663912
求助须知:如何正确求助?哪些是违规求助? 4854455
关于积分的说明 15106388
捐赠科研通 4822231
什么是DOI,文献DOI怎么找? 2581316
邀请新用户注册赠送积分活动 1535509
关于科研通互助平台的介绍 1493754